/***************************************************************************************************
|
|
|
|
Insert to an empty leaf
|
|
=======================
|
|
|
|
STATE OLD STATE NEW STATE
|
|
===== ========= =========
|
|
|
|
oldRoot newRoot
|
|
▲ ▲
|
|
│ │
|
|
┌───────┐ ┏━━━┻━━━┓ ┌───────┐ ┏━━━┻━━━┓
|
|
top │Sibling├────▶┃ Hash ┃◀─┐ │Sibling├────▶┃ Hash ┃◀─┐
|
|
└───────┘ ┗━━━━━━━┛ │ └───────┘ ┗━━━━━━━┛ │
|
|
│ │
|
|
│ │
|
|
┏━━━┻━━━┓ ┌───────┐ ┏━━━┻━━━┓ ┌───────┐
|
|
top ┌─────▶┃ Hash ┃◀──┤Sibling│ ┌─────▶┃ Hash ┃◀──┤Sibling│
|
|
│ ┗━━━━━━━┛ └───────┘ │ ┗━━━━━━━┛ └───────┘
|
|
│ │
|
|
│ │
|
|
┌───────┐ ┏━━━┻━━━┓ ┌───────┐ ┏━━━┻━━━┓
|
|
top │Sibling├──▶┃ Hash ┃◀─────┐ │Sibling├──▶┃ Hash ┃◀─────┐
|
|
└───────┘ ┗━━━━━━━┛ │ └───────┘ ┗━━━━━━━┛ │
|
|
│ │
|
|
│ │
|
|
┌────┴────┐ ┌────┴────┐
|
|
old0 │ 0 │ │New1Leaf │
|
|
└─────────┘ └─────────┘
|
|
|
|
|
|
┏━━━━━━━┓ ┏━━━━━━━┓
|
|
na ┃ Hash ┃ ┃ Hash ┃
|
|
┗━━━━━━━┛ ┗━━━━━━━┛
|
|
|
|
|
|
┏━━━━━━━┓ ┏━━━━━━━┓
|
|
na ┃ Hash ┃ ┃ Hash ┃
|
|
┗━━━━━━━┛ ┗━━━━━━━┛
|
|
|
|
|
|
|
|
Insert to a used leaf.
|
|
=====================
|
|
|
|
STATE OLD STATE NEW STATE
|
|
===== ========= =========
|
|
|
|
|
|
oldRoot newRoot
|
|
▲ ▲
|
|
│ │
|
|
┌───────┐ ┏━━━┻━━━┓ ┌───────┐ ┏━━━┻━━━┓
|
|
top │Sibling├────▶┃ Hash ┃◀─┐ │Sibling├────▶┃ Hash ┃◀─┐
|
|
└───────┘ ┗━━━━━━━┛ │ └───────┘ ┗━━━━━━━┛ │
|
|
│ │
|
|
│ │
|
|
┏━━━┻━━━┓ ┌───────┐ ┏━━━┻━━━┓ ┌───────┐
|
|
top ┌─────▶┃ Hash ┃◀──┤Sibling│ ┌─────▶┃ Hash ┃◀──┤Sibling│
|
|
│ ┗━━━━━━━┛ └───────┘ │ ┗━━━━━━━┛ └───────┘
|
|
│ │
|
|
│ │
|
|
┌───────┐ ┏━━━┻━━━┓ ┌───────┐ ┏━━━┻━━━┓
|
|
top │Sibling├──▶┃ Hash ┃◀─────┐ │Sibling├──▶┃ Hash ┃◀─────┐
|
|
└───────┘ ┗━━━━━━━┛ │ └───────┘ ┗━━━━━━━┛ │
|
|
│ │
|
|
│ │
|
|
┌────┴────┐ ┏━━━┻━━━┓ ┌───────┐
|
|
old1 │Old1Leaf │ ┌─────▶┃ Hash ┃◀──┼─ 0 │
|
|
└─────────┘ │ ┗━━━━━━━┛ └───────┘
|
|
│
|
|
│
|
|
┏━━━━━━━┓ ┌───────┐ ┏━━━┻━━━┓
|
|
bot ┃ Hash ┃ │ 0 ─┼──▶┃ Hash ┃◀─────┐
|
|
┗━━━━━━━┛ └───────┘ ┗━━━━━━━┛ │
|
|
│
|
|
│
|
|
┏━━━━━━━┓ ┏━━━┻━━━┓ ┌───────┐
|
|
bot ┃ Hash ┃ ┌─────▶┃ Hash ┃◀──│ 0 │
|
|
┗━━━━━━━┛ │ ┗━━━━━━━┛ └───────┘
|
|
│
|
|
│
|
|
┏━━━━━━━┓ ┌─────────┐ ┏━━━┻━━━┓ ┌─────────┐
|
|
new1 ┃ Hash ┃ │Old1Leaf ├──▶┃ Hash ┃◀──│New1Leaf │
|
|
┗━━━━━━━┛ └─────────┘ ┗━━━━━━━┛ └─────────┘
|
|
|
|
|
|
┏━━━━━━━┓ ┏━━━━━━━┓
|
|
na ┃ Hash ┃ ┃ Hash ┃
|
|
┗━━━━━━━┛ ┗━━━━━━━┛
|
|
|
|
|
|
┏━━━━━━━┓ ┏━━━━━━━┓
|
|
na ┃ Hash ┃ ┃ Hash ┃
|
|
┗━━━━━━━┛ ┗━━━━━━━┛
|
|
|
|
|
|
Fnction
|
|
fnc[0] fnc[1]
|
|
0 0 NOP
|
|
0 1 UPDATE
|
|
1 0 INSERT
|
|
1 1 DELETE
|
|
|
|
|
|
***************************************************************************************************/
|
|
|
|
include "../gates.circom";
|
|
include "../bitify.circom";
|
|
include "../comparators.circom";
|
|
include "../switcher.circom";
|
|
include "smtlevins.circom";
|
|
include "smtinsertlevel.circom";
|
|
include "smtinsertsm.circom";
|
|
include "smthash.circom";
|
|
|
|
template SMTInsert(nLevels) {
|
|
signal input oldRoot;
|
|
signal input newRoot;
|
|
signal input siblings[nLevels];
|
|
signal input oldKey;
|
|
signal input oldValue;
|
|
signal input isOld0;
|
|
signal input newKey;
|
|
signal input newValue;
|
|
signal input fnc[2];
|
|
|
|
signal enabled;
|
|
|
|
enabled <== fnc[0] + fnc[1] - fnc[0]*fnc[1]
|
|
|
|
component hash1Old = SMTHash1();
|
|
hash1Old.key <== oldKey;
|
|
hash1Old.value <== oldValue;
|
|
|
|
component hash1New = SMTHash1();
|
|
hash1New.key <== newKey;
|
|
hash1New.value <== newValue;
|
|
|
|
component n2bOld = Num2Bits_strict();
|
|
component n2bNew = Num2Bits_strict();
|
|
|
|
n2bOld.in <== oldKey;
|
|
n2bNew.in <== newKey;
|
|
|
|
component smtLevIns = SMTLevIns(nLevels);
|
|
for (var i=0; i<nLevels; i++) smtLevIns.siblings[i] <== siblings[i];
|
|
smtLevIns.enabled <== enabled;
|
|
|
|
component xors[nLevels];
|
|
for (var i=0; i<nLevels; i++) {
|
|
xors[i] = XOR();
|
|
xors[i].a <== n2bOld.out[i];
|
|
xors[i].b <== n2bNew.out[i];
|
|
}
|
|
|
|
component sm[nLevels];
|
|
for (var i=0; i<nLevels; i++) {
|
|
sm[i] = SMTInsertSM();
|
|
if (i==0) {
|
|
sm[i].prev_top <== enabled;
|
|
sm[i].prev_old1 <== 0;
|
|
sm[i].prev_old0 <== 0;
|
|
sm[i].prev_bot <== 0;
|
|
sm[i].prev_new1 <== 0;
|
|
sm[i].prev_na <== 1-enabled;
|
|
sm[i].prev_upd <== 0;
|
|
} else {
|
|
sm[i].prev_top <== sm[i-1].st_top;
|
|
sm[i].prev_old1 <== sm[i-1].st_old1;
|
|
sm[i].prev_old0 <== sm[i-1].st_old0;
|
|
sm[i].prev_bot <== sm[i-1].st_bot;
|
|
sm[i].prev_new1 <== sm[i-1].st_new1;
|
|
sm[i].prev_na <== sm[i-1].st_na;
|
|
sm[i].prev_upd <== sm[i-1].st_upd;
|
|
}
|
|
sm[i].is0 <== isOld0;
|
|
sm[i].xor <== xors[i].out;
|
|
sm[i].fnc[0] <== fnc[0];
|
|
sm[i].fnc[1] <== fnc[1];
|
|
sm[i].levIns <== smtLevIns.levIns[i];
|
|
}
|
|
sm[nLevels-1].st_na === 1;
|
|
|
|
component levels[nLevels];
|
|
for (var i=nLevels-1; i != -1; i--) {
|
|
levels[i] = SMTInsertLevel();
|
|
|
|
levels[i].st_top <== sm[i].st_top;
|
|
levels[i].st_old1 <== sm[i].st_old1;
|
|
levels[i].st_old0 <== sm[i].st_old0;
|
|
levels[i].st_bot <== sm[i].st_bot;
|
|
levels[i].st_new1 <== sm[i].st_new1;
|
|
levels[i].st_na <== sm[i].st_na;
|
|
levels[i].st_upd <== sm[i].st_upd;
|
|
|
|
levels[i].sibling <== siblings[i];
|
|
levels[i].old1leaf <== hash1Old.out;
|
|
levels[i].new1leaf <== hash1New.out;
|
|
|
|
levels[i].newlrbit <== n2bNew.out[i];
|
|
if (i==nLevels-1) {
|
|
levels[i].oldChild <== 0;
|
|
levels[i].newChild <== 0;
|
|
} else {
|
|
levels[i].oldChild <== levels[i+1].oldRoot;
|
|
levels[i].newChild <== levels[i+1].newRoot;
|
|
}
|
|
}
|
|
|
|
component topSwitcher = Switcher();
|
|
|
|
topSwitcher.sel <== fnc[0]*fnc[1];
|
|
topSwitcher.L <== levels[0].oldRoot;
|
|
topSwitcher.R <== levels[0].newRoot;
|
|
|
|
topSwitcher.outL === oldRoot*enabled;
|
|
topSwitcher.outR === newRoot*enabled;
|
|
}
|