|
|
package ecc
import ( "bytes" "errors" "math/big" )
// EC is the data structure for the elliptic curve parameters
type EC struct { A *big.Int B *big.Int Q *big.Int }
// NewEC (y^2 = x^3 + ax + b) mod q, where q is a prime number
func NewEC(a, b, q int) (ec EC) { ec.A = big.NewInt(int64(a)) ec.B = big.NewInt(int64(b)) ec.Q = big.NewInt(int64(q)) return ec }
// At gets a point x in the curve
func (ec *EC) At(x *big.Int) (Point, Point, error) { if x.Cmp(ec.Q) > 0 { return Point{}, Point{}, errors.New("x<ec.Q") } // y^2 = (x^3 + ax + b) mod q
// y = sqrt (x^3 + ax + b) mod q
// x^3
x3 := new(big.Int).Exp(x, big.NewInt(int64(3)), nil) // a^x
aX := new(big.Int).Mul(ec.A, x) // x^3 + a^x
x3aX := new(big.Int).Add(x3, aX) // x^3 + a^x + b
x3aXb := new(big.Int).Add(x3aX, ec.B) // y = sqrt (x^3 + ax + b) mod q
y := new(big.Int).ModSqrt(x3aXb, ec.Q) return Point{x, y}, Point{x, new(big.Int).Sub(ec.Q, y)}, nil }
// TODO add valid checker point function Valid()
// Neg returns the inverse of the P point on the elliptic curve
func (ec *EC) Neg(p Point) Point { // TODO get error when point not found on the ec
return Point{p.X, new(big.Int).Sub(ec.Q, p.Y)} }
// Order returns smallest n where nG = O (point at zero)
func (ec *EC) Order(g Point) (int, error) { for i := 1; i < int(ec.Q.Int64())+1; i++ { mPoint, err := ec.Mul(g, i) if err != nil { return i, err } if mPoint.Equal(zeroPoint) { return i, nil } } return -1, errors.New("invalid order") }
// Add adds two points p1 and p2 and gets q, returns the negate of q
func (ec *EC) Add(p1, p2 Point) (Point, error) { if p1.Equal(zeroPoint) { return p2, nil } if p2.Equal(zeroPoint) { return p1, nil }
var numerator, denominator, sRaw, s *big.Int if bytes.Equal(p1.X.Bytes(), p2.X.Bytes()) && (!bytes.Equal(p1.Y.Bytes(), p2.Y.Bytes()) || bytes.Equal(p1.Y.Bytes(), bigZero.Bytes())) { return zeroPoint, nil } else if bytes.Equal(p1.X.Bytes(), p2.X.Bytes()) { // use tangent as slope
// x^2
x2 := new(big.Int).Mul(p1.X, p1.X) // 3 * x^2
x23 := new(big.Int).Mul(big.NewInt(int64(3)), x2) // 3 * x^2 + a
numerator = new(big.Int).Add(x23, ec.A) // 2 * y
denominator = new(big.Int).Mul(big.NewInt(int64(2)), p1.Y) // s = (3 * x^2 + a) / (2 * y) mod ec.Q
denInv := new(big.Int).ModInverse(denominator, ec.Q) sRaw = new(big.Int).Mul(numerator, denInv) s = new(big.Int).Mod(sRaw, ec.Q) } else { // slope
// y0-y1
numerator = new(big.Int).Sub(p1.Y, p2.Y) // x0-x1
denominator = new(big.Int).Sub(p1.X, p2.X) // s = (y0-y1) / (x0-x1) mod ec.Q
denInv := new(big.Int).ModInverse(denominator, ec.Q) sRaw = new(big.Int).Mul(numerator, denInv) s = new(big.Int).Mod(sRaw, ec.Q) }
// q: new point
var q Point // s^2
s2 := new(big.Int).Exp(s, big.NewInt(int64(2)), nil) // s^2 - p1.X
x2Xo := new(big.Int).Sub(s2, p1.X) // s^2 - p1.X - p2.X
x2XoX2 := new(big.Int).Sub(x2Xo, p2.X) q.X = new(big.Int).Mod(x2XoX2, ec.Q)
// p1.X - q.X
xoX2 := new(big.Int).Sub(p1.X, q.X) // s(p1.X - q.X)
sXoX2 := new(big.Int).Mul(s, xoX2) // s(p1.X - q.X) - p1.Y
sXoX2Y := new(big.Int).Sub(sXoX2, p1.Y) // q.Y = (s(p1.X - q.X) - p1.Y) mod ec.Q
q.Y = new(big.Int).Mod(sXoX2Y, ec.Q)
// negate q
// q = ec.Neg(q)
return q, nil }
// Mul multiplies a point n times on the elliptic curve
func (ec *EC) Mul(p Point, n int) (Point, error) { var err error p2 := p r := zeroPoint for 0 < n { if n&1 == 1 { r, err = ec.Add(r, p2) if err != nil { return p, err } } n = n >> 1 p2, err = ec.Add(p2, p2) if err != nil { return p, err }
} return r, nil }
|