@ -0,0 +1,111 @@ |
|||
package paillier |
|||
|
|||
import ( |
|||
"crypto/rand" |
|||
"errors" |
|||
"math/big" |
|||
|
|||
prime "../prime" |
|||
) |
|||
|
|||
const ( |
|||
bits = 16 |
|||
) |
|||
|
|||
type PublicKey struct { |
|||
N *big.Int `json:"n"` |
|||
G *big.Int `json:"g"` |
|||
} |
|||
type PrivateKey struct { |
|||
Lambda *big.Int `json:"lambda"` |
|||
Mu *big.Int `json:"mu"` |
|||
} |
|||
|
|||
type Key struct { |
|||
PubK PublicKey |
|||
PrivK PrivateKey |
|||
} |
|||
|
|||
func GenerateKeyPair() (key Key, err error) { |
|||
p, err := rand.Prime(rand.Reader, bits/2) |
|||
if err != nil { |
|||
return key, err |
|||
} |
|||
q, err := rand.Prime(rand.Reader, bits/2) |
|||
if err != nil { |
|||
return key, err |
|||
} |
|||
|
|||
pq := new(big.Int).Mul(p, q) |
|||
p1q1 := big.NewInt((p.Int64() - 1) * (q.Int64() - 1)) |
|||
gcd := new(big.Int).GCD(nil, nil, pq, p1q1) |
|||
if gcd.Int64() != int64(1) { |
|||
return key, errors.New("gcd comprovation failed") |
|||
} |
|||
|
|||
n := new(big.Int).Mul(p, q) |
|||
lambda := big.NewInt(int64(Lcm(float64(p.Int64())-1, float64(q.Int64())-1))) |
|||
|
|||
//g generation
|
|||
alpha := big.NewInt(int64(prime.RandInt(0, int(n.Int64())))) |
|||
beta := big.NewInt(int64(prime.RandInt(0, int(n.Int64())))) |
|||
alphan := new(big.Int).Mul(alpha, n) |
|||
alphan1 := new(big.Int).Add(alphan, big.NewInt(1)) |
|||
betaN := new(big.Int).Exp(beta, n, nil) |
|||
ab := new(big.Int).Mul(alphan1, betaN) |
|||
n2 := new(big.Int).Mul(n, n) |
|||
g := new(big.Int).Mod(ab, n2) |
|||
//in some Paillier implementations use this:
|
|||
// g = new(big.Int).Add(n, big.NewInt(1))
|
|||
|
|||
key.PubK.N = n |
|||
key.PubK.G = g |
|||
|
|||
//mu generation
|
|||
Glambda := new(big.Int).Exp(g, lambda, nil) |
|||
u := new(big.Int).Mod(Glambda, n2) |
|||
L := L(u, n) |
|||
mu := new(big.Int).ModInverse(L, n) |
|||
|
|||
key.PrivK.Lambda = lambda |
|||
key.PrivK.Mu = mu |
|||
|
|||
return key, nil |
|||
} |
|||
|
|||
func Lcm(a, b float64) float64 { |
|||
r := (a * b) / float64(prime.Gcd(int(a), int(b))) |
|||
return r |
|||
|
|||
} |
|||
func L(u *big.Int, n *big.Int) *big.Int { |
|||
u1 := new(big.Int).Sub(u, big.NewInt(1)) |
|||
L := new(big.Int).Div(u1, n) |
|||
return L |
|||
} |
|||
|
|||
func Encrypt(m *big.Int, pubK PublicKey) *big.Int { |
|||
gM := new(big.Int).Exp(pubK.G, m, nil) |
|||
r := big.NewInt(int64(prime.RandInt(0, int(pubK.N.Int64())))) |
|||
rN := new(big.Int).Exp(r, pubK.N, nil) |
|||
gMrN := new(big.Int).Mul(gM, rN) |
|||
n2 := new(big.Int).Mul(pubK.N, pubK.N) |
|||
c := new(big.Int).Mod(gMrN, n2) |
|||
return c |
|||
} |
|||
func Decrypt(c *big.Int, pubK PublicKey, privK PrivateKey) *big.Int { |
|||
cLambda := new(big.Int).Exp(c, privK.Lambda, nil) |
|||
n2 := new(big.Int).Mul(pubK.N, pubK.N) |
|||
u := new(big.Int).Mod(cLambda, n2) |
|||
L := L(u, pubK.N) |
|||
LMu := new(big.Int).Mul(L, privK.Mu) |
|||
m := new(big.Int).Mod(LMu, pubK.N) |
|||
return m |
|||
} |
|||
|
|||
func HomomorphicAddition(c1 *big.Int, c2 *big.Int, pubK PublicKey) *big.Int { |
|||
c1c2 := new(big.Int).Mul(c1, c2) |
|||
n2 := new(big.Int).Mul(pubK.N, pubK.N) |
|||
d := new(big.Int).Mod(c1c2, n2) |
|||
return d |
|||
} |
@ -0,0 +1,41 @@ |
|||
package paillier |
|||
|
|||
import ( |
|||
"bytes" |
|||
"fmt" |
|||
"math/big" |
|||
"testing" |
|||
) |
|||
|
|||
func TestEncryptDecrypt(t *testing.T) { |
|||
key, err := GenerateKeyPair() |
|||
if err != nil { |
|||
t.Errorf(err.Error()) |
|||
} |
|||
fmt.Println(key) |
|||
mBytes := []byte("Hi") |
|||
m := new(big.Int).SetBytes(mBytes) |
|||
c := Encrypt(m, key.PubK) |
|||
d := Decrypt(c, key.PubK, key.PrivK) |
|||
if m == d { |
|||
fmt.Println(key) |
|||
t.Errorf("m not equal to decrypted") |
|||
} |
|||
} |
|||
|
|||
func TestHomomorphicAddition(t *testing.T) { |
|||
key, err := GenerateKeyPair() |
|||
if err != nil { |
|||
t.Errorf(err.Error()) |
|||
} |
|||
n1 := big.NewInt(int64(110)) |
|||
n2 := big.NewInt(int64(150)) |
|||
c1 := Encrypt(n1, key.PubK) |
|||
c2 := Encrypt(n2, key.PubK) |
|||
c3c4 := HomomorphicAddition(c1, c2, key.PubK) |
|||
d := Decrypt(c3c4, key.PubK, key.PrivK) |
|||
if !bytes.Equal(new(big.Int).Add(n1, n2).Bytes(), d.Bytes()) { |
|||
fmt.Println(key) |
|||
t.Errorf("decrypted result not equal to original result") |
|||
} |
|||
} |