@ -0,0 +1 @@ |
|||
fmt |
@ -0,0 +1,45 @@ |
|||
package secrets |
|||
|
|||
import ( |
|||
"crypto/rand" |
|||
"math/big" |
|||
"testing" |
|||
) |
|||
|
|||
func TestCreate(t *testing.T) { |
|||
k := 123456789 |
|||
p, err := rand.Prime(rand.Reader, bits/2) |
|||
if err != nil { |
|||
t.Errorf(err.Error()) |
|||
} |
|||
|
|||
nNeededSecrets := big.NewInt(int64(3)) |
|||
nShares := big.NewInt(int64(6)) |
|||
shares, err := Create( |
|||
nNeededSecrets, |
|||
nShares, |
|||
p, |
|||
big.NewInt(int64(k))) |
|||
if err != nil { |
|||
t.Errorf(err.Error()) |
|||
} |
|||
|
|||
//generate sharesToUse
|
|||
var sharesToUse [][]*big.Int |
|||
sharesToUse = append(sharesToUse, shares[2]) |
|||
sharesToUse = append(sharesToUse, shares[1]) |
|||
sharesToUse = append(sharesToUse, shares[0]) |
|||
secr := LagrangeInterpolation(sharesToUse, p) |
|||
|
|||
// fmt.Print("original secret: ")
|
|||
// fmt.Println(k)
|
|||
// fmt.Print("p: ")
|
|||
// fmt.Println(p)
|
|||
// fmt.Print("shares: ")
|
|||
// fmt.Println(shares)
|
|||
// fmt.Print("secret result: ")
|
|||
// fmt.Println(secr)
|
|||
if int64(k) != secr.Int64() { |
|||
t.Errorf("reconstructed secret not correspond to original secret") |
|||
} |
|||
} |
@ -0,0 +1,114 @@ |
|||
package secrets |
|||
|
|||
import ( |
|||
"crypto/rand" |
|||
"errors" |
|||
"math/big" |
|||
) |
|||
|
|||
const ( |
|||
bits = 1024 |
|||
) |
|||
|
|||
// t: number of secrets needed
|
|||
// n: number of shares
|
|||
// p: random point
|
|||
// k: secret to share
|
|||
// Create calculates the secrets to share from given parameters
|
|||
func Create(t, n, p, k *big.Int) (result [][]*big.Int, err error) { |
|||
if k.Cmp(p) > 0 { |
|||
return nil, errors.New("Error: need k<p. k: " + k.String() + ", p: " + p.String()) |
|||
} |
|||
//generate the basePolynomial
|
|||
var basePolynomial []*big.Int |
|||
basePolynomial = append(basePolynomial, k) |
|||
for i := 0; i < int(t.Int64())-1; i++ { |
|||
randPrime, err := rand.Prime(rand.Reader, bits/2) |
|||
if err != nil { |
|||
return result, err |
|||
} |
|||
basePolynomial = append(basePolynomial, randPrime) |
|||
} |
|||
|
|||
//calculate shares, based on the basePolynomial
|
|||
var shares []*big.Int |
|||
for i := 1; i < int(n.Int64())+1; i++ { |
|||
var pResultMod *big.Int |
|||
pResult := big.NewInt(int64(0)) |
|||
for x, polElem := range basePolynomial { |
|||
if x == 0 { |
|||
pResult = pResult.Add(pResult, polElem) |
|||
} else { |
|||
iBigInt := big.NewInt(int64(i)) |
|||
xBigInt := big.NewInt(int64(x)) |
|||
iPowed := iBigInt.Exp(iBigInt, xBigInt, nil) |
|||
currElem := iPowed.Mul(iPowed, polElem) |
|||
pResult = pResult.Add(pResult, currElem) |
|||
pResultMod = pResult.Mod(pResult, p) |
|||
} |
|||
} |
|||
shares = append(shares, pResultMod) |
|||
} |
|||
//put the share together with his p value
|
|||
result = packSharesAndI(shares) |
|||
return result, nil |
|||
} |
|||
|
|||
func packSharesAndI(sharesString []*big.Int) (r [][]*big.Int) { |
|||
for i, share := range sharesString { |
|||
curr := []*big.Int{share, big.NewInt(int64(i + 1))} |
|||
r = append(r, curr) |
|||
} |
|||
return r |
|||
} |
|||
func unpackSharesAndI(sharesPacked [][]*big.Int) ([]*big.Int, []*big.Int) { |
|||
var shares []*big.Int |
|||
var i []*big.Int |
|||
for _, share := range sharesPacked { |
|||
shares = append(shares, share[0]) |
|||
i = append(i, share[1]) |
|||
} |
|||
return shares, i |
|||
} |
|||
|
|||
// LagrangeInterpolation calculates the secret from given shares
|
|||
func LagrangeInterpolation(sharesGiven [][]*big.Int, p *big.Int) *big.Int { |
|||
resultN := big.NewInt(int64(0)) |
|||
resultD := big.NewInt(int64(0)) |
|||
|
|||
//unpack shares
|
|||
sharesBigInt, sharesIBigInt := unpackSharesAndI(sharesGiven) |
|||
|
|||
for i := 0; i < len(sharesBigInt); i++ { |
|||
lagrangeNumerator := big.NewInt(int64(1)) |
|||
lagrangeDenominator := big.NewInt(int64(1)) |
|||
for j := 0; j < len(sharesBigInt); j++ { |
|||
if sharesIBigInt[i] != sharesIBigInt[j] { |
|||
currLagrangeNumerator := sharesIBigInt[j] |
|||
currLagrangeDenominator := new(big.Int).Sub(sharesIBigInt[j], sharesIBigInt[i]) |
|||
lagrangeNumerator = new(big.Int).Mul(lagrangeNumerator, currLagrangeNumerator) |
|||
lagrangeDenominator = new(big.Int).Mul(lagrangeDenominator, currLagrangeDenominator) |
|||
} |
|||
} |
|||
numerator := new(big.Int).Mul(sharesBigInt[i], lagrangeNumerator) |
|||
quo := new(big.Int).Quo(numerator, lagrangeDenominator) |
|||
if quo.Int64() != 0 { |
|||
resultN = resultN.Add(resultN, quo) |
|||
} else { |
|||
resultNMULlagrangeDenominator := new(big.Int).Mul(resultN, lagrangeDenominator) |
|||
resultN = new(big.Int).Add(resultNMULlagrangeDenominator, numerator) |
|||
|
|||
resultD = resultD.Add(resultD, lagrangeDenominator) |
|||
} |
|||
} |
|||
|
|||
var modinvMul *big.Int |
|||
if resultD.Int64() != 0 { |
|||
modinv := new(big.Int).ModInverse(resultD, p) |
|||
modinvMul = new(big.Int).Mul(resultN, modinv) |
|||
} else { |
|||
modinvMul = resultN |
|||
} |
|||
r := new(big.Int).Mod(modinvMul, p) |
|||
return r |
|||
} |