You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

121 lines
3.0 KiB

package paillier
import (
"crypto/rand"
"errors"
"math/big"
// prime "../prime"
"github.com/arnaucube/cryptofun/prime"
)
const (
bits = 18
)
// PublicKey stores the public key data
type PublicKey struct {
N *big.Int `json:"n"`
G *big.Int `json:"g"`
}
// PrivateKey stores the private key data
type PrivateKey struct {
Lambda *big.Int `json:"lambda"`
Mu *big.Int `json:"mu"`
}
// Key stores the public and private key data
type Key struct {
PubK PublicKey
PrivK PrivateKey
}
// GenerateKeyPair generates a random private and public key
func GenerateKeyPair() (key Key, err error) {
p, err := rand.Prime(rand.Reader, bits/2)
if err != nil {
return key, err
}
q, err := rand.Prime(rand.Reader, bits/2)
if err != nil {
return key, err
}
pq := new(big.Int).Mul(p, q)
p1q1 := big.NewInt((p.Int64() - 1) * (q.Int64() - 1))
gcd := new(big.Int).GCD(nil, nil, pq, p1q1)
if gcd.Int64() != int64(1) {
return key, errors.New("gcd comprovation failed")
}
n := new(big.Int).Mul(p, q)
lambda := big.NewInt(int64(lcm(float64(p.Int64())-1, float64(q.Int64())-1)))
//g generation
alpha := big.NewInt(int64(prime.RandInt(0, int(n.Int64()))))
beta := big.NewInt(int64(prime.RandInt(0, int(n.Int64()))))
alphan := new(big.Int).Mul(alpha, n)
alphan1 := new(big.Int).Add(alphan, big.NewInt(1))
betaN := new(big.Int).Exp(beta, n, nil)
ab := new(big.Int).Mul(alphan1, betaN)
n2 := new(big.Int).Mul(n, n)
g := new(big.Int).Mod(ab, n2)
//in some Paillier implementations use this:
// g = new(big.Int).Add(n, big.NewInt(1))
key.PubK.N = n
key.PubK.G = g
//mu generation
Glambda := new(big.Int).Exp(g, lambda, nil)
u := new(big.Int).Mod(Glambda, n2)
L := l(u, n)
mu := new(big.Int).ModInverse(L, n)
key.PrivK.Lambda = lambda
key.PrivK.Mu = mu
return key, nil
}
func lcm(a, b float64) float64 {
r := (a * b) / float64(prime.Gcd(int(a), int(b)))
return r
}
func l(u *big.Int, n *big.Int) *big.Int {
u1 := new(big.Int).Sub(u, big.NewInt(1))
L := new(big.Int).Div(u1, n)
return L
}
// Encrypt encrypts a message m with given PublicKey
func Encrypt(m *big.Int, pubK PublicKey) *big.Int {
gM := new(big.Int).Exp(pubK.G, m, nil)
r := big.NewInt(int64(prime.RandInt(0, int(pubK.N.Int64()))))
rN := new(big.Int).Exp(r, pubK.N, nil)
gMrN := new(big.Int).Mul(gM, rN)
n2 := new(big.Int).Mul(pubK.N, pubK.N)
c := new(big.Int).Mod(gMrN, n2)
return c
}
// Decrypt deencrypts a ciphertext c with given PublicKey and PrivateKey
func Decrypt(c *big.Int, pubK PublicKey, privK PrivateKey) *big.Int {
cLambda := new(big.Int).Exp(c, privK.Lambda, nil)
n2 := new(big.Int).Mul(pubK.N, pubK.N)
u := new(big.Int).Mod(cLambda, n2)
L := l(u, pubK.N)
LMu := new(big.Int).Mul(L, privK.Mu)
m := new(big.Int).Mod(LMu, pubK.N)
return m
}
// HomomorphicAddition calculates the addition of tow encrypted values given a PublicKey
func HomomorphicAddition(c1 *big.Int, c2 *big.Int, pubK PublicKey) *big.Int {
c1c2 := new(big.Int).Mul(c1, c2)
n2 := new(big.Int).Mul(pubK.N, pubK.N)
d := new(big.Int).Mod(c1c2, n2)
return d
}