package rsa
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/rand"
|
|
"math/big"
|
|
)
|
|
|
|
const (
|
|
bits = 512 // 2048
|
|
)
|
|
|
|
var bigOne = big.NewInt(int64(1))
|
|
|
|
// PublicKey stores the public key data
|
|
type PublicKey struct {
|
|
E *big.Int `json:"e"`
|
|
N *big.Int `json:"n"`
|
|
}
|
|
|
|
// PrivateKey stores the private key data
|
|
type PrivateKey struct {
|
|
D *big.Int `json:"d"`
|
|
N *big.Int `json:"n"`
|
|
}
|
|
|
|
// Key stores the public and private key data
|
|
type Key struct {
|
|
PubK PublicKey
|
|
PrivK PrivateKey
|
|
}
|
|
|
|
// GenerateKeyPair generates a random private and public key
|
|
func GenerateKeyPair() (key Key, err error) {
|
|
p, err := rand.Prime(rand.Reader, bits/2)
|
|
if err != nil {
|
|
return key, err
|
|
}
|
|
q, err := rand.Prime(rand.Reader, bits/2)
|
|
if err != nil {
|
|
return key, err
|
|
}
|
|
|
|
n := new(big.Int).Mul(p, q)
|
|
p1 := new(big.Int).Sub(p, bigOne)
|
|
q1 := new(big.Int).Sub(q, bigOne)
|
|
phi := new(big.Int).Mul(p1, q1)
|
|
e := 65537
|
|
var pubK PublicKey
|
|
pubK.E = big.NewInt(int64(e))
|
|
pubK.N = n
|
|
|
|
d := new(big.Int).ModInverse(big.NewInt(int64(e)), phi)
|
|
|
|
var privK PrivateKey
|
|
privK.D = d
|
|
privK.N = n
|
|
|
|
key.PubK = pubK
|
|
key.PrivK = privK
|
|
return key, nil
|
|
}
|
|
|
|
// Encrypt encrypts a message m with given PublicKey
|
|
func Encrypt(m *big.Int, pubK PublicKey) *big.Int {
|
|
c := new(big.Int).Exp(m, pubK.E, pubK.N)
|
|
return c
|
|
}
|
|
|
|
// Decrypt deencrypts a ciphertext c with given PrivateKey
|
|
func Decrypt(c *big.Int, privK PrivateKey) *big.Int {
|
|
m := new(big.Int).Exp(c, privK.D, privK.N)
|
|
return m
|
|
}
|
|
|
|
// Blind blinds a message
|
|
func Blind(m *big.Int, r *big.Int, pubK PublicKey) *big.Int {
|
|
rE := new(big.Int).Exp(r, pubK.E, nil)
|
|
mrE := new(big.Int).Mul(m, rE)
|
|
mBlinded := new(big.Int).Mod(mrE, pubK.N)
|
|
return mBlinded
|
|
}
|
|
|
|
// BlindSign blind signs a message without knowing the content
|
|
func BlindSign(m *big.Int, privK PrivateKey) *big.Int {
|
|
sigma := new(big.Int).Exp(m, privK.D, privK.N)
|
|
return sigma
|
|
}
|
|
|
|
// Unblind unblinds the Blinded Signature
|
|
func Unblind(sigma *big.Int, r *big.Int, pubK PublicKey) *big.Int {
|
|
r1 := new(big.Int).ModInverse(r, pubK.N)
|
|
bsr := new(big.Int).Mul(sigma, r1)
|
|
sig := new(big.Int).Mod(bsr, pubK.N)
|
|
return sig
|
|
}
|
|
|
|
// Verify verifies the signature of a message given the PublicKey of the signer
|
|
func Verify(msg *big.Int, mSigned *big.Int, pubK PublicKey) bool {
|
|
//decrypt the mSigned with pubK
|
|
Cd := new(big.Int).Exp(mSigned, pubK.E, nil)
|
|
m := new(big.Int).Mod(Cd, pubK.N)
|
|
return bytes.Equal(msg.Bytes(), m.Bytes())
|
|
}
|
|
|
|
// HomomorphicMul calculates the multiplication of tow encrypted values given a PublicKey
|
|
func HomomorphicMul(c1 *big.Int, c2 *big.Int, pubK PublicKey) *big.Int {
|
|
c1c2 := new(big.Int).Mul(c1, c2)
|
|
n2 := new(big.Int).Mul(pubK.N, pubK.N)
|
|
d := new(big.Int).Mod(c1c2, n2)
|
|
return d
|
|
}
|