arnaucube 3dfb1e5875 | 6 years ago | |
---|---|---|
.. | ||
README.md | 6 years ago | |
bn128.go | 6 years ago | |
fq.go | 6 years ago | |
fq2.go | 6 years ago | |
fq6.go | 6 years ago | |
fq12.go | 6 years ago | |
fqn_test.go | 6 years ago | |
g1.go | 6 years ago | |
g1_test.go | 6 years ago | |
g2.go | 6 years ago | |
g2_test.go | 6 years ago |
[not finished]
This is implemented followng the implementations and info from:
Multiplication and Squaring on Pairing-Friendly Fields
, Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ricardo Dahab https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf
Optimal Pairings
, Frederik Vercauteren https://www.cosic.esat.kuleuven.be/bcrypt/optimal.pdf
Double-and-Add with Relative Jacobian Coordinates
, Björn Fay https://eprint.iacr.org/2014/1014.pdf
Fast and Regular Algorithms for Scalar Multiplication over Elliptic Curves
, Matthieu Rivain https://eprint.iacr.org/2011/338.pdf
First let's define three basic functions to convert integer compositions to big integer compositions:
func iToBig(a int) *big.Int {
return big.NewInt(int64(a))
}
func iiToBig(a, b int) [2]*big.Int {
return [2]*big.Int{iToBig(a), iToBig(b)}
}
func iiiToBig(a, b int) [2]*big.Int {
return [2]*big.Int{iToBig(a), iToBig(b)}
}
// new finite field of order 1
fq1 := NewFq(iToBig(7))
// basic operations of finite field 1
res := fq1.Add(iToBig(4), iToBig(4))
res = fq1.Double(iToBig(5))
res = fq1.Sub(iToBig(5), iToBig(7))
res = fq1.Neg(iToBig(5))
res = fq1.Mul(iToBig(5), iToBig(11))
res = fq1.Inverse(iToBig(4))
res = fq1.Square(iToBig(5))
// new finite field of order 2
nonResidueFq2str := "-1" // i / Beta
nonResidueFq2, ok := new(big.Int).SetString(nonResidueFq2str, 10)
fq2 := Fq2{fq1, nonResidueFq2}
nonResidueFq6 := iiToBig(9, 1)
// basic operations of finite field of order 2
res := fq2.Add(iiToBig(4, 4), iiToBig(3, 4))
res = fq2.Double(iiToBig(5, 3))
res = fq2.Sub(iiToBig(5, 3), iiToBig(7, 2))
res = fq2.Neg(iiToBig(4, 4))
res = fq2.Mul(iiToBig(4, 4), iiToBig(3, 4))
res = fq2.Inverse(iiToBig(4, 4))
res = fq2.Div(iiToBig(4, 4), iiToBig(3, 4))
res = fq2.Square(iiToBig(4, 4))
// new finite field of order 6
nonResidueFq6 := iiToBig(9, 1) // TODO
fq6 := Fq6{fq2, nonResidueFq6}
// define two new values of Finite Field 6, in order to be able to perform the operations
a := [3][2]*big.Int{
iiToBig(1, 2),
iiToBig(3, 4),
iiToBig(5, 6)}
b := [3][2]*big.Int{
iiToBig(12, 11),
iiToBig(10, 9),
iiToBig(8, 7)}
// basic operations of finite field order 6
res := fq6.Add(a, b)
res = fq6.Sub(a, b)
res = fq6.Mul(a, b)
divRes := fq6.Div(mulRes, b)
// new finite field of order 12
q, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10) // i
if !ok {
fmt.Println("error parsing string to big integer")
}
fq1 := NewFq(q)
nonResidueFq2, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208582", 10) // i
assert.True(t, ok)
nonResidueFq6 := iiToBig(9, 1)
fq2 := Fq2{fq1, nonResidueFq2}
fq6 := Fq6{fq2, nonResidueFq6}
fq12 := Fq12{fq6, fq2, nonResidueFq6}
bn128, err := NewBn128()
assert.Nil(t, err)
r1 := big.NewInt(int64(33))
r2 := big.NewInt(int64(44))
gr1 := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(r1))
gr2 := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(r2))
grsum1 := bn128.G1.Add(gr1, gr2)
r1r2 := bn128.Fq1.Add(r1, r2)
grsum2 := bn128.G1.MulScalar(bn128.G1.G, r1r2)
a := bn128.G1.Affine(grsum1)
b := bn128.G1.Affine(grsum2)
assert.Equal(t, a, b)
assert.Equal(t, "0x2f978c0ab89ebaa576866706b14787f360c4d6c3869efe5a72f7c3651a72ff00", utils.BytesToHex(a[0].Bytes()))
assert.Equal(t, "0x12e4ba7f0edca8b4fa668fe153aebd908d322dc26ad964d4cd314795844b62b2", utils.BytesToHex(a[1].Bytes()))
bn128, err := NewBn128()
assert.Nil(t, err)
r1 := big.NewInt(int64(33))
r2 := big.NewInt(int64(44))
gr1 := bn128.G2.MulScalar(bn128.G2.G, bn128.Fq1.Copy(r1))
gr2 := bn128.G2.MulScalar(bn128.G2.G, bn128.Fq1.Copy(r2))
grsum1 := bn128.G2.Add(gr1, gr2)
r1r2 := bn128.Fq1.Add(r1, r2)
grsum2 := bn128.G2.MulScalar(bn128.G2.G, r1r2)
a := bn128.G2.Affine(grsum1)
b := bn128.G2.Affine(grsum2)
assert.Equal(t, a, b)