
darkID
Blockchain based anonymous distributed ID system

arnaucode.com

1@arnaucode

Proof of Concept

19th January 2018

Main Concept
● Guarantee a decentralized login system

● Make sure that register users are real ones

○ Guarantee that there are no bots generating large amounts of fake accounts

● Ensure that only verified users can generate anonymous IDs (darkID)

2

Motivation
● Traditional Login Systems are owned by few big corporations

○ “Information is power. But like all power, there are those who want to keep it for Themselves.”

- Aaron Swartz

● With centralized systems the power to censor, ban, delete users is in few

hands

● We need to build an internet with decentralized systems, to decentralize

power

3

Basic Functionalities
● Verify the identity of an user

○ Based on the

■ Username, Email, Phone, ID card, ...

● Generate anonymous ID (darkID) and get that ID signed by a serverSigner

with high reputation

● Inject the darkID into the ethereum blockchain using a Smart Contract

● Authenticate in the platforms using the darkID, that is public in the ethereum

blockchain

4

Elevator pitch
● This is Marie

● Marie wants to surf the net, without being identified

● But also, Marie don’t want a net full of bots and fake accounts

● Marie wants a login system based on cryptography, to ensure anonymity

● Also wants to ensure that only verified users can use the login system

● Marie loves decentralized systems

● Marie loves ethereum smart contracts

● Marie loves darkID 5

Technologies used
● Desktop App

○ Angularjs + Electron + Go lang

● Backend

○ Go lang

○ Solidity (Ethereum)

6

First Prototype - ‘blockchainIDsystem’
Everything from scratch:

● Written own RSA library

● Written own peer-to-peer network

● Written own blockchain algorithms over the p2p network

● Written Server-ID-Signer

● Written Desktop App

https://github.com/arnaucode/blockchainIDsystem

7
Project not finished and currently abandoned

https://github.com/arnaucode/blockchainIDsystem

First Prototype ● peers
○ the peers of the p2p network that runs the blockchain

● serverCA
○ Is a REST server that has been certified (is the

Certified Authority) to validate the peers that will be
able to participate of the blockchain.

○ Have the webapp (frontend) to validate peers through
a GUI interface

○ The GUI frontend webapp allows also to view the
current peers of the network and the blocks of the
blockchain

● server-ID-signer
○ The server where the user creates a non anonymous

account
○ Also is the server that blind signs the Anonymous ID

of the users
○ Have the webapp (frontend) to interact through a GUI

interface
○

8

First Prototype
Problems:

● Implement a production ready peer-to-peer network is not so easy
○ Gnutella, distributed hash tables, freenet, …

● Use own cryptographic algorithms for real world solutions is not a good idea

● Implement a blockchain system needs to add some of Proof-of-Work,

Proof-of-Stake, Proof-of-Cooperation, … system → too much code for a small

university subject project

9

First Prototype short demo

10

First Prototype - ‘blockchainIDsystem’

● At some point, I realized that this is not the way

● Better use ethereum smart contracts instead of developing own p2p network

and own blockchain (assuming small amount of time for developing this

university subject project)

11

12

2nd prototype:

 darkID
Blockchain based anonymous distributed ID system

https://github.com/arnaucode/darkID

https://github.com/arnaucode/darkID

2nd Prototype: darkID
● Instead of developing own p2p network and own blockchain → use ethereum

blockchain and ethereum Smart Contracts

● Use of Go existing cryptographic algorithms

● Written Server-ID-Signer

● Written Desktop App

13

darkID
● server-ID-signer

○ The server where the user creates a non anonymous
account

○ Also is the server that blind signs the Anonymous ID
of the users

○ Have the webapp (frontend) to interact through a GUI
interface

● Desktop App
○ Asdf

● ethereum Smart Contracts
○ Where the darkIDs are stored

14

Desktop App

15

Desktop App

16

Desktop App

17

How darkID works? Step by step process

18

1. The user registers a non anonymous user (using email, phone, password,
etc), and performs the login with that user

2. The user, locally, generates a RSA key pair (private key & public key)
3. The user blinds his Public-Key with the server-ID-signer Public-Key
4. The user's Public-Key blinded, is sent to the server-ID-signer
5. The server-ID-signer Blind Signs the Public-Key blinded from the user,

and returns it to the user
6. The user unblinds the Public-Key signed by the server-ID-signer, and now

has the Public-Key Blind Signed by the server-ID-signer

1. The user registers a non anonymous user (using email, phone, password, etc), and performs the login with that user
2. The user, locally, generates a RSA key pair (private key & public key)
3. The user blinds his Public-Key with the server-ID-signer Public-Key
4. The user's Public-Key blinded, is sent to the server-ID-signer
5. The server-ID-signer Blind Signs the Public-Key blinded from the user, and returns it to the user
6. The user unblinds the Public-Key signed by the server-ID-signer, and now has the Public-Key Blind Signed by the server-ID-signer

7. The user sends the Public-Key blind signed to the p2p network
8. The peers verify that the Public-Key Blind Signed is correctly signed by

the server-ID-signer, if it is, they add the Public-Key to the Ethereum
Blockchain, inside a new block

9. Then, when the user wants to login into a platform, just needs to put his
Public-Key

10. The platform goes to the Ethereum Blockchain, to check if this Public-Key
is registered in the blockchain

11. The platform sends a message encrypted with the user Public-Key, and
the user returns the message decrypted with the Private-Key, to verify that
is the owner of that Public-Key

How darkID works? Step by step process

19

20

RSA and Blind Signature
RSA encryption system

https://en.wikipedia.org/wiki/RSA_cryptosystem

● Public parameters: (e, n)

● Private parameters: (d, p, q, phi, sigma)

● Public-Key = (e, n)

● Private-Key = (d, n)

● Encryption:

● Decryption:

Blind signature process

https://en.wikipedia.org/wiki/Blind_signature

● m is the message (in our case, is the Public-Key of the

user to be blinded)

● server-ID-signer blind signs m'

● user can unblind m, to get m signed

● This works because RSA keys satisfy this equation

● and this

https://en.wikipedia.org/wiki/RSA_cryptosystem
https://en.wikipedia.org/wiki/Blind_signature

21

darkID Generation

22

darkID Login

darkID

23

Demo time

Conclusions
● It was funny starting to implement a p2p network and a blockchain from

scratch

● But makes no sense having not so much time in a short university subject

● ethereum smart contracts have a lot of potential uses

● Current version is far from a stable release for real use

● Can be an option for a Final Degree Project:
○ Develop an entire blockchain from scratch, with some alternative to PoW and PoS

● darkID have lots of applications
○ For social networks, anonymous voting systems, leaks system, …

○ Better use over Tor network

24

