|
|
// Copyright 2017-2018 DERO Project. All rights reserved.
// Use of this source code in any form is governed by RESEARCH license.
// license can be found in the LICENSE file.
// GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8
//
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package crypto
import "io" import "fmt" import "bytes" import "crypto/rand" import "encoding/hex" import "encoding/binary"
const KeyLength = 32
// Key can be a Scalar or a Point
type Key [KeyLength]byte
func (k Key) MarshalText() ([]byte, error) { return []byte(fmt.Sprintf("%x", k[:])), nil }
func (k Key) String() string { return fmt.Sprintf("%x", k[:]) }
func (p *Key) FromBytes(b [KeyLength]byte) { *p = b }
func (p *Key) ToBytes() (result [KeyLength]byte) { result = [KeyLength]byte(*p) return }
// convert a hex string to a key
func HexToKey(h string) (result Key) { byteSlice, _ := hex.DecodeString(h) if len(byteSlice) != 32 { panic("Incorrect key size") } copy(result[:], byteSlice) return }
func HexToHash(h string) (result Hash) { byteSlice, _ := hex.DecodeString(h) if len(byteSlice) != 32 { panic("Incorrect key size") } copy(result[:], byteSlice) return }
// generates a public from the secret key
func (p *Key) PublicKey() (pubKey *Key) { point := new(ExtendedGroupElement) GeScalarMultBase(point, p) pubKey = new(Key) point.ToBytes(pubKey) return }
// tests whether the key is valid ( represents a point on the curve )
func (k *Key) Public_Key_Valid() bool { var point ExtendedGroupElement return point.FromBytes(k) }
func (k *Key) Private_Key_Valid() bool { return Sc_check(k) }
// Creates a point on the Edwards Curve by hashing the key
func (p *Key) HashToEC() (result *ExtendedGroupElement) { result = new(ExtendedGroupElement) var p1 ProjectiveGroupElement var p2 CompletedGroupElement h := Key(Keccak256(p[:])) p1.FromBytes(&h) GeMul8(&p2, &p1) p2.ToExtended(result) return }
func (p *Key) HashToPoint() (result Key) { extended := p.HashToEC() extended.ToBytes(&result) return }
// this uses random number generator from the OS
func RandomScalar() (result *Key) { result = new(Key) var reduceFrom [KeyLength * 2]byte tmp := make([]byte, KeyLength*2) rand.Read(tmp) copy(reduceFrom[:], tmp) ScReduce(result, &reduceFrom) return }
// generate a new private-public key pair
func NewKeyPair() (privKey *Key, pubKey *Key) { privKey = RandomScalar() pubKey = privKey.PublicKey() return }
func ParseKey(buf io.Reader) (result Key, err error) { key := make([]byte, KeyLength) if _, err = buf.Read(key); err != nil { return } copy(result[:], key) return }
/* //does a * G where a is a scalar and G is the curve basepoint
key scalarmultBase(const key & a) { ge_p3 point; key aG; sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand
ge_scalarmult_base(&point, aG.bytes); ge_p3_tobytes(aG.bytes, &point); return aG; } */ //does a * G where a is a scalar and G is the curve basepoint
func ScalarmultBase(a Key) (aG Key) { reduce32copy := a ScReduce32(&reduce32copy) point := new(ExtendedGroupElement) GeScalarMultBase(point, &a) point.ToBytes(&aG) return aG }
// generates a key which can be used as private key or mask
// this function is similiar to RandomScalar except for reduce32, TODO can we merge both
func skGen() Key { skey := RandomScalar() ScReduce32(skey) return *skey }
func (k *Key) ToExtended() (result *ExtendedGroupElement) { result = new(ExtendedGroupElement) result.FromBytes(k) return }
// bothe the function resturn identity of the ed25519 curve
func identity() (result *Key) { result = new(Key) result[0] = 1 return } func CurveIdentity() (result Key) { result = Identity return result }
func CurveOrder() (result Key) { result = L return result }
// convert a uint64 to a scalar
func d2h(val uint64) (result *Key) { result = new(Key) for i := 0; val > 0; i++ { result[i] = byte(val & 0xFF) val /= 256 } return }
func HashToScalar(data ...[]byte) (result *Key) { result = new(Key) *result = Key(Keccak256(data...)) ScReduce32(result) return }
// does a * P where a is a scalar and P is an arbitrary point
func ScalarMultKey(Point *Key, scalar *Key) (result *Key) { P := new(ExtendedGroupElement) P.FromBytes(Point) resultPoint := new(ProjectiveGroupElement) GeScalarMult(resultPoint, scalar, P) result = new(Key) resultPoint.ToBytes(result) return }
// multiply a scalar by H (second curve point of Pedersen Commitment)
func ScalarMultH(scalar *Key) (result *Key) { h := new(ExtendedGroupElement) h.FromBytes(&H) resultPoint := new(ProjectiveGroupElement) GeScalarMult(resultPoint, scalar, h) result = new(Key) resultPoint.ToBytes(result) return }
// add two points together
func AddKeys(sum, k1, k2 *Key) { a := k1.ToExtended() b := new(CachedGroupElement) k2.ToExtended().ToCached(b) c := new(CompletedGroupElement) geAdd(c, a, b) tmp := new(ExtendedGroupElement) c.ToExtended(tmp) tmp.ToBytes(sum) return }
// compute a*G + b*B
func AddKeys2(result, a, b, B *Key) { BPoint := B.ToExtended() RPoint := new(ProjectiveGroupElement) GeDoubleScalarMultVartime(RPoint, b, BPoint, a) RPoint.ToBytes(result) return }
//addKeys3
//aAbB = a*A + b*B where a, b are scalars, A, B are curve points
//B must be input after applying "precomp"
func AddKeys3(result *Key, a *Key, A *Key, b *Key, B_Precomputed *[8]CachedGroupElement) { A_Point := new(ExtendedGroupElement) A_Point.FromBytes(A)
result_projective := new(ProjectiveGroupElement) GeDoubleScalarMultPrecompVartime(result_projective, a, A_Point, b, B_Precomputed) result_projective.ToBytes(result)
}
// subtract two points A - B
func SubKeys(diff, k1, k2 *Key) { a := k1.ToExtended() b := new(CachedGroupElement) k2.ToExtended().ToCached(b) c := new(CompletedGroupElement) geSub(c, a, b) tmp := new(ExtendedGroupElement) c.ToExtended(tmp) tmp.ToBytes(diff) return }
// this gives you a commitment from an amount
// this is used to convert tx fee or miner tx amount to commitment
func Commitment_From_Amount(amount uint64) Key { return *(ScalarMultH(d2h(amount))) }
// this is used to convert miner tx commitment to mask
// equivalent to rctOps.cpp zeroCommit
func ZeroCommitment_From_Amount(amount uint64) Key { mask := *(identity()) mask = ScalarmultBase(mask) am := d2h(amount) bH := ScalarMultH(am) AddKeys(&mask, &mask, bH) return mask }
// zero fill the key
func Sc_0(k *Key) { for i := 0; i < 32; i++ { k[i] = 0 } }
// RandomPubKey takes a random scalar, interprets it as a point on the curve
// remember the low order bug and do more auditing of the entire thing
func RandomPubKey() (result *Key) { result = new(Key) p3 := new(ExtendedGroupElement) var p1 ProjectiveGroupElement var p2 CompletedGroupElement h := RandomScalar() p1.FromBytes(h) GeMul8(&p2, &p1) p2.ToExtended(p3) p3.ToBytes(result) return }
// this is the main key derivation function and is the crux
// when deriving keys in the case user A wants to send DERO to another user B ( this is outgoing case)
// public key is B's view key
// private keys is TX private key
// if user B wants to derive key, he needs to ( this is incoming case )
// public key is TX public key
// private is B's private keys
// HOPE the above is clean and clear
func KeyDerivation(pub *Key, priv *Key) (KeyDerivation Key) { var point ExtendedGroupElement var point2 ProjectiveGroupElement var point3 CompletedGroupElement
if !priv.Private_Key_Valid() { panic("Invalid private key.") } tmp := *pub if !point.FromBytes(&tmp) { panic("Invalid public key.") }
tmp = *priv GeScalarMult(&point2, &tmp, &point) GeMul8(&point3, &point2) point3.ToProjective(&point2)
point2.ToBytes(&tmp) return tmp }
// the origincal c implementation needs to be checked for varint overflow
// we also need to check the compatibility of golang varint with cryptonote implemented varint
// outputIndex is the position of output within that specific transaction
func (k *Key) KeyDerivationToScalar(outputIndex uint64) (scalar *Key) { tmp := make([]byte, 12, 12)
length := binary.PutUvarint(tmp, outputIndex) tmp = tmp[:length]
var buf bytes.Buffer buf.Write(k[:]) buf.Write(tmp) scalar = HashToScalar(buf.Bytes()) return }
// generate ephermal keys from a key derivation
// base key is the B's public spend key or A's private spend key
// outputIndex is the position of output within that specific transaction
func (kd *Key) KeyDerivation_To_PublicKey(outputIndex uint64, baseKey Key) Key {
var point1, point2 ExtendedGroupElement var point3 CachedGroupElement var point4 CompletedGroupElement var point5 ProjectiveGroupElement
tmp := baseKey if !point1.FromBytes(&tmp) { panic("Invalid public key.") } scalar := kd.KeyDerivationToScalar(outputIndex) GeScalarMultBase(&point2, scalar) point2.ToCached(&point3) geAdd(&point4, &point1, &point3) point4.ToProjective(&point5) point5.ToBytes(&tmp) return tmp }
// generate ephermal keys from a key derivation
// base key is the A's private spend key
// outputIndex is the position of output within that specific transaction
func (kd *Key) KeyDerivation_To_PrivateKey(outputIndex uint64, baseKey Key) Key { if !baseKey.Private_Key_Valid() { panic("Invalid private key.") } scalar := kd.KeyDerivationToScalar(outputIndex)
tmp := baseKey ScAdd(&tmp, &tmp, scalar) return tmp }
// NewKeyImage creates a new KeyImage from the given public and private keys.
// The keys are usually the ephemeral keys derived using KeyDerivation.
func GenerateKeyImage(pub Key, private Key) Key { var proj ProjectiveGroupElement
ext := pub.HashToEC() GeScalarMult(&proj, &private, ext)
var ki Key proj.ToBytes(&ki) return ki }
|