|
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package blake2s implements the BLAKE2s hash algorithm defined by RFC 7693
// and the extendable output function (XOF) BLAKE2Xs.
//
// For a detailed specification of BLAKE2s see https://blake2.net/blake2.pdf
// and for BLAKE2Xs see https://blake2.net/blake2x.pdf
//
// If you aren't sure which function you need, use BLAKE2s (Sum256 or New256).
// If you need a secret-key MAC (message authentication code), use the New256
// function with a non-nil key.
//
// BLAKE2X is a construction to compute hash values larger than 32 bytes. It
// can produce hash values between 0 and 65535 bytes.
package blake2s // import "golang.org/x/crypto/blake2s"
import ( "encoding/binary" "errors" "hash" )
const ( // The blocksize of BLAKE2s in bytes.
BlockSize = 64
// The hash size of BLAKE2s-256 in bytes.
Size = 32
// The hash size of BLAKE2s-128 in bytes.
Size128 = 16 )
var errKeySize = errors.New("blake2s: invalid key size")
var iv = [8]uint32{ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, }
// Sum256 returns the BLAKE2s-256 checksum of the data.
func Sum256(data []byte) [Size]byte { var sum [Size]byte checkSum(&sum, Size, data) return sum }
// New256 returns a new hash.Hash computing the BLAKE2s-256 checksum. A non-nil
// key turns the hash into a MAC. The key must between zero and 32 bytes long.
func New256(key []byte) (hash.Hash, error) { return newDigest(Size, key) }
// New128 returns a new hash.Hash computing the BLAKE2s-128 checksum given a
// non-empty key. Note that a 128-bit digest is too small to be secure as a
// cryptographic hash and should only be used as a MAC, thus the key argument
// is not optional.
func New128(key []byte) (hash.Hash, error) { if len(key) == 0 { return nil, errors.New("blake2s: a key is required for a 128-bit hash") } return newDigest(Size128, key) }
func newDigest(hashSize int, key []byte) (*digest, error) { if len(key) > Size { return nil, errKeySize } d := &digest{ size: hashSize, keyLen: len(key), } copy(d.key[:], key) d.Reset() return d, nil }
func checkSum(sum *[Size]byte, hashSize int, data []byte) { var ( h [8]uint32 c [2]uint32 )
h = iv h[0] ^= uint32(hashSize) | (1 << 16) | (1 << 24)
if length := len(data); length > BlockSize { n := length &^ (BlockSize - 1) if length == n { n -= BlockSize } hashBlocks(&h, &c, 0, data[:n]) data = data[n:] }
var block [BlockSize]byte offset := copy(block[:], data) remaining := uint32(BlockSize - offset)
if c[0] < remaining { c[1]-- } c[0] -= remaining
hashBlocks(&h, &c, 0xFFFFFFFF, block[:])
for i, v := range h { binary.LittleEndian.PutUint32(sum[4*i:], v) } }
type digest struct { h [8]uint32 c [2]uint32 size int block [BlockSize]byte offset int
key [BlockSize]byte keyLen int }
func (d *digest) BlockSize() int { return BlockSize }
func (d *digest) Size() int { return d.size }
func (d *digest) Reset() { d.h = iv d.h[0] ^= uint32(d.size) | (uint32(d.keyLen) << 8) | (1 << 16) | (1 << 24) d.offset, d.c[0], d.c[1] = 0, 0, 0 if d.keyLen > 0 { d.block = d.key d.offset = BlockSize } }
func (d *digest) Write(p []byte) (n int, err error) { n = len(p)
if d.offset > 0 { remaining := BlockSize - d.offset if n <= remaining { d.offset += copy(d.block[d.offset:], p) return } copy(d.block[d.offset:], p[:remaining]) hashBlocks(&d.h, &d.c, 0, d.block[:]) d.offset = 0 p = p[remaining:] }
if length := len(p); length > BlockSize { nn := length &^ (BlockSize - 1) if length == nn { nn -= BlockSize } hashBlocks(&d.h, &d.c, 0, p[:nn]) p = p[nn:] }
d.offset += copy(d.block[:], p) return }
func (d *digest) Sum(sum []byte) []byte { var hash [Size]byte d.finalize(&hash) return append(sum, hash[:d.size]...) }
func (d *digest) finalize(hash *[Size]byte) { var block [BlockSize]byte h := d.h c := d.c
copy(block[:], d.block[:d.offset]) remaining := uint32(BlockSize - d.offset) if c[0] < remaining { c[1]-- } c[0] -= remaining
hashBlocks(&h, &c, 0xFFFFFFFF, block[:]) for i, v := range h { binary.LittleEndian.PutUint32(hash[4*i:], v) } }
|