|
|
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bn256 implements a particular bilinear group at the 128-bit security level.
//
// Bilinear groups are the basis of many of the new cryptographic protocols
// that have been proposed over the past decade. They consist of a triplet of
// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
// (where gₓ is a generator of the respective group). That function is called
// a pairing function.
//
// This package specifically implements the Optimal Ate pairing over a 256-bit
// Barreto-Naehrig curve as described in
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
// with the implementation described in that paper.
package bn256 // import "golang.org/x/crypto/bn256"
import ( "crypto/rand" "io" "math/big" )
// BUG(agl): this implementation is not constant time.
// TODO(agl): keep GF(p²) elements in Mongomery form.
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct { p *curvePoint }
// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
func RandomG1(r io.Reader) (*big.Int, *G1, error) { var k *big.Int var err error
for { k, err = rand.Int(r, Order) if err != nil { return nil, nil, err } if k.Sign() > 0 { break } }
return k, new(G1).ScalarBaseMult(k), nil }
func (e *G1) String() string { return "bn256.G1" + e.p.String() }
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns e.
func (e *G1) ScalarBaseMult(k *big.Int) *G1 { if e.p == nil { e.p = newCurvePoint(nil) } e.p.Mul(curveGen, k, new(bnPool)) return e }
// ScalarMult sets e to a*k and then returns e.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 { if e.p == nil { e.p = newCurvePoint(nil) } e.p.Mul(a.p, k, new(bnPool)) return e }
// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G1) Add(a, b *G1) *G1 { if e.p == nil { e.p = newCurvePoint(nil) } e.p.Add(a.p, b.p, new(bnPool)) return e }
// Neg sets e to -a and then returns e.
func (e *G1) Neg(a *G1) *G1 { if e.p == nil { e.p = newCurvePoint(nil) } e.p.Negative(a.p) return e }
// Marshal converts n to a byte slice.
func (e *G1) Marshal() []byte { e.p.MakeAffine(nil)
xBytes := new(big.Int).Mod(e.p.x, p).Bytes() yBytes := new(big.Int).Mod(e.p.y, p).Bytes()
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*2) copy(ret[1*numBytes-len(xBytes):], xBytes) copy(ret[2*numBytes-len(yBytes):], yBytes)
return ret }
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) (*G1, bool) { // Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 2*numBytes { return nil, false }
if e.p == nil { e.p = newCurvePoint(nil) }
e.p.x.SetBytes(m[0*numBytes : 1*numBytes]) e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 { // This is the point at infinity.
e.p.y.SetInt64(1) e.p.z.SetInt64(0) e.p.t.SetInt64(0) } else { e.p.z.SetInt64(1) e.p.t.SetInt64(1)
if !e.p.IsOnCurve() { return nil, false } }
return e, true }
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct { p *twistPoint }
// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
func RandomG2(r io.Reader) (*big.Int, *G2, error) { var k *big.Int var err error
for { k, err = rand.Int(r, Order) if err != nil { return nil, nil, err } if k.Sign() > 0 { break } }
return k, new(G2).ScalarBaseMult(k), nil }
func (e *G2) String() string { return "bn256.G2" + e.p.String() }
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns out.
func (e *G2) ScalarBaseMult(k *big.Int) *G2 { if e.p == nil { e.p = newTwistPoint(nil) } e.p.Mul(twistGen, k, new(bnPool)) return e }
// ScalarMult sets e to a*k and then returns e.
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 { if e.p == nil { e.p = newTwistPoint(nil) } e.p.Mul(a.p, k, new(bnPool)) return e }
// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G2) Add(a, b *G2) *G2 { if e.p == nil { e.p = newTwistPoint(nil) } e.p.Add(a.p, b.p, new(bnPool)) return e }
// Marshal converts n into a byte slice.
func (n *G2) Marshal() []byte { n.p.MakeAffine(nil)
xxBytes := new(big.Int).Mod(n.p.x.x, p).Bytes() xyBytes := new(big.Int).Mod(n.p.x.y, p).Bytes() yxBytes := new(big.Int).Mod(n.p.y.x, p).Bytes() yyBytes := new(big.Int).Mod(n.p.y.y, p).Bytes()
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*4) copy(ret[1*numBytes-len(xxBytes):], xxBytes) copy(ret[2*numBytes-len(xyBytes):], xyBytes) copy(ret[3*numBytes-len(yxBytes):], yxBytes) copy(ret[4*numBytes-len(yyBytes):], yyBytes)
return ret }
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) (*G2, bool) { // Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 4*numBytes { return nil, false }
if e.p == nil { e.p = newTwistPoint(nil) }
e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes]) e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes]) e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes]) e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
if e.p.x.x.Sign() == 0 && e.p.x.y.Sign() == 0 && e.p.y.x.Sign() == 0 && e.p.y.y.Sign() == 0 { // This is the point at infinity.
e.p.y.SetOne() e.p.z.SetZero() e.p.t.SetZero() } else { e.p.z.SetOne() e.p.t.SetOne()
if !e.p.IsOnCurve() { return nil, false } }
return e, true }
// GT is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type GT struct { p *gfP12 }
func (g *GT) String() string { return "bn256.GT" + g.p.String() }
// ScalarMult sets e to a*k and then returns e.
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT { if e.p == nil { e.p = newGFp12(nil) } e.p.Exp(a.p, k, new(bnPool)) return e }
// Add sets e to a+b and then returns e.
func (e *GT) Add(a, b *GT) *GT { if e.p == nil { e.p = newGFp12(nil) } e.p.Mul(a.p, b.p, new(bnPool)) return e }
// Neg sets e to -a and then returns e.
func (e *GT) Neg(a *GT) *GT { if e.p == nil { e.p = newGFp12(nil) } e.p.Invert(a.p, new(bnPool)) return e }
// Marshal converts n into a byte slice.
func (n *GT) Marshal() []byte { n.p.Minimal()
xxxBytes := n.p.x.x.x.Bytes() xxyBytes := n.p.x.x.y.Bytes() xyxBytes := n.p.x.y.x.Bytes() xyyBytes := n.p.x.y.y.Bytes() xzxBytes := n.p.x.z.x.Bytes() xzyBytes := n.p.x.z.y.Bytes() yxxBytes := n.p.y.x.x.Bytes() yxyBytes := n.p.y.x.y.Bytes() yyxBytes := n.p.y.y.x.Bytes() yyyBytes := n.p.y.y.y.Bytes() yzxBytes := n.p.y.z.x.Bytes() yzyBytes := n.p.y.z.y.Bytes()
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*12) copy(ret[1*numBytes-len(xxxBytes):], xxxBytes) copy(ret[2*numBytes-len(xxyBytes):], xxyBytes) copy(ret[3*numBytes-len(xyxBytes):], xyxBytes) copy(ret[4*numBytes-len(xyyBytes):], xyyBytes) copy(ret[5*numBytes-len(xzxBytes):], xzxBytes) copy(ret[6*numBytes-len(xzyBytes):], xzyBytes) copy(ret[7*numBytes-len(yxxBytes):], yxxBytes) copy(ret[8*numBytes-len(yxyBytes):], yxyBytes) copy(ret[9*numBytes-len(yyxBytes):], yyxBytes) copy(ret[10*numBytes-len(yyyBytes):], yyyBytes) copy(ret[11*numBytes-len(yzxBytes):], yzxBytes) copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
return ret }
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *GT) Unmarshal(m []byte) (*GT, bool) { // Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 12*numBytes { return nil, false }
if e.p == nil { e.p = newGFp12(nil) }
e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes]) e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes]) e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes]) e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes]) e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes]) e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes]) e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes]) e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes]) e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes]) e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes]) e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes]) e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
return e, true }
// Pair calculates an Optimal Ate pairing.
func Pair(g1 *G1, g2 *G2) *GT { return >{optimalAte(g2.p, g1.p, new(bnPool))} }
// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
// number of allocations made during processing.
type bnPool struct { bns []*big.Int count int }
func (pool *bnPool) Get() *big.Int { if pool == nil { return new(big.Int) }
pool.count++ l := len(pool.bns) if l == 0 { return new(big.Int) }
bn := pool.bns[l-1] pool.bns = pool.bns[:l-1] return bn }
func (pool *bnPool) Put(bn *big.Int) { if pool == nil { return } pool.bns = append(pool.bns, bn) pool.count-- }
func (pool *bnPool) Count() int { return pool.count }
|