|
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package s2k implements the various OpenPGP string-to-key transforms as
// specified in RFC 4800 section 3.7.1.
package s2k // import "golang.org/x/crypto/openpgp/s2k"
import ( "crypto" "hash" "io" "strconv"
"golang.org/x/crypto/openpgp/errors" )
// Config collects configuration parameters for s2k key-stretching
// transformatioms. A nil *Config is valid and results in all default
// values. Currently, Config is used only by the Serialize function in
// this package.
type Config struct { // Hash is the default hash function to be used. If
// nil, SHA1 is used.
Hash crypto.Hash // S2KCount is only used for symmetric encryption. It
// determines the strength of the passphrase stretching when
// the said passphrase is hashed to produce a key. S2KCount
// should be between 1024 and 65011712, inclusive. If Config
// is nil or S2KCount is 0, the value 65536 used. Not all
// values in the above range can be represented. S2KCount will
// be rounded up to the next representable value if it cannot
// be encoded exactly. When set, it is strongly encrouraged to
// use a value that is at least 65536. See RFC 4880 Section
// 3.7.1.3.
S2KCount int }
func (c *Config) hash() crypto.Hash { if c == nil || uint(c.Hash) == 0 { // SHA1 is the historical default in this package.
return crypto.SHA1 }
return c.Hash }
func (c *Config) encodedCount() uint8 { if c == nil || c.S2KCount == 0 { return 96 // The common case. Correspoding to 65536
}
i := c.S2KCount switch { // Behave like GPG. Should we make 65536 the lowest value used?
case i < 1024: i = 1024 case i > 65011712: i = 65011712 }
return encodeCount(i) }
// encodeCount converts an iterative "count" in the range 1024 to
// 65011712, inclusive, to an encoded count. The return value is the
// octet that is actually stored in the GPG file. encodeCount panics
// if i is not in the above range (encodedCount above takes care to
// pass i in the correct range). See RFC 4880 Section 3.7.7.1.
func encodeCount(i int) uint8 { if i < 1024 || i > 65011712 { panic("count arg i outside the required range") }
for encoded := 0; encoded < 256; encoded++ { count := decodeCount(uint8(encoded)) if count >= i { return uint8(encoded) } }
return 255 }
// decodeCount returns the s2k mode 3 iterative "count" corresponding to
// the encoded octet c.
func decodeCount(c uint8) int { return (16 + int(c&15)) << (uint32(c>>4) + 6) }
// Simple writes to out the result of computing the Simple S2K function (RFC
// 4880, section 3.7.1.1) using the given hash and input passphrase.
func Simple(out []byte, h hash.Hash, in []byte) { Salted(out, h, in, nil) }
var zero [1]byte
// Salted writes to out the result of computing the Salted S2K function (RFC
// 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
func Salted(out []byte, h hash.Hash, in []byte, salt []byte) { done := 0 var digest []byte
for i := 0; done < len(out); i++ { h.Reset() for j := 0; j < i; j++ { h.Write(zero[:]) } h.Write(salt) h.Write(in) digest = h.Sum(digest[:0]) n := copy(out[done:], digest) done += n } }
// Iterated writes to out the result of computing the Iterated and Salted S2K
// function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
// salt and iteration count.
func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) { combined := make([]byte, len(in)+len(salt)) copy(combined, salt) copy(combined[len(salt):], in)
if count < len(combined) { count = len(combined) }
done := 0 var digest []byte for i := 0; done < len(out); i++ { h.Reset() for j := 0; j < i; j++ { h.Write(zero[:]) } written := 0 for written < count { if written+len(combined) > count { todo := count - written h.Write(combined[:todo]) written = count } else { h.Write(combined) written += len(combined) } } digest = h.Sum(digest[:0]) n := copy(out[done:], digest) done += n } }
// Parse reads a binary specification for a string-to-key transformation from r
// and returns a function which performs that transform.
func Parse(r io.Reader) (f func(out, in []byte), err error) { var buf [9]byte
_, err = io.ReadFull(r, buf[:2]) if err != nil { return }
hash, ok := HashIdToHash(buf[1]) if !ok { return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1]))) } if !hash.Available() { return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hash))) } h := hash.New()
switch buf[0] { case 0: f := func(out, in []byte) { Simple(out, h, in) } return f, nil case 1: _, err = io.ReadFull(r, buf[:8]) if err != nil { return } f := func(out, in []byte) { Salted(out, h, in, buf[:8]) } return f, nil case 3: _, err = io.ReadFull(r, buf[:9]) if err != nil { return } count := decodeCount(buf[8]) f := func(out, in []byte) { Iterated(out, h, in, buf[:8], count) } return f, nil }
return nil, errors.UnsupportedError("S2K function") }
// Serialize salts and stretches the given passphrase and writes the
// resulting key into key. It also serializes an S2K descriptor to
// w. The key stretching can be configured with c, which may be
// nil. In that case, sensible defaults will be used.
func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error { var buf [11]byte buf[0] = 3 /* iterated and salted */ buf[1], _ = HashToHashId(c.hash()) salt := buf[2:10] if _, err := io.ReadFull(rand, salt); err != nil { return err } encodedCount := c.encodedCount() count := decodeCount(encodedCount) buf[10] = encodedCount if _, err := w.Write(buf[:]); err != nil { return err }
Iterated(key, c.hash().New(), passphrase, salt, count) return nil }
// hashToHashIdMapping contains pairs relating OpenPGP's hash identifier with
// Go's crypto.Hash type. See RFC 4880, section 9.4.
var hashToHashIdMapping = []struct { id byte hash crypto.Hash name string }{ {1, crypto.MD5, "MD5"}, {2, crypto.SHA1, "SHA1"}, {3, crypto.RIPEMD160, "RIPEMD160"}, {8, crypto.SHA256, "SHA256"}, {9, crypto.SHA384, "SHA384"}, {10, crypto.SHA512, "SHA512"}, {11, crypto.SHA224, "SHA224"}, }
// HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP
// hash id.
func HashIdToHash(id byte) (h crypto.Hash, ok bool) { for _, m := range hashToHashIdMapping { if m.id == id { return m.hash, true } } return 0, false }
// HashIdToString returns the name of the hash function corresponding to the
// given OpenPGP hash id.
func HashIdToString(id byte) (name string, ok bool) { for _, m := range hashToHashIdMapping { if m.id == id { return m.name, true } }
return "", false }
// HashIdToHash returns an OpenPGP hash id which corresponds the given Hash.
func HashToHashId(h crypto.Hash) (id byte, ok bool) { for _, m := range hashToHashIdMapping { if m.hash == h { return m.id, true } } return 0, false }
|