|
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import ( "crypto" "hash" "io" "strconv" "time"
"golang.org/x/crypto/openpgp/armor" "golang.org/x/crypto/openpgp/errors" "golang.org/x/crypto/openpgp/packet" "golang.org/x/crypto/openpgp/s2k" )
// DetachSign signs message with the private key from signer (which must
// already have been decrypted) and writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error { return detachSign(w, signer, message, packet.SigTypeBinary, config) }
// ArmoredDetachSign signs message with the private key from signer (which
// must already have been decrypted) and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) (err error) { return armoredDetachSign(w, signer, message, packet.SigTypeBinary, config) }
// DetachSignText signs message (after canonicalising the line endings) with
// the private key from signer (which must already have been decrypted) and
// writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error { return detachSign(w, signer, message, packet.SigTypeText, config) }
// ArmoredDetachSignText signs message (after canonicalising the line endings)
// with the private key from signer (which must already have been decrypted)
// and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error { return armoredDetachSign(w, signer, message, packet.SigTypeText, config) }
func armoredDetachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) { out, err := armor.Encode(w, SignatureType, nil) if err != nil { return } err = detachSign(out, signer, message, sigType, config) if err != nil { return } return out.Close() }
func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) { if signer.PrivateKey == nil { return errors.InvalidArgumentError("signing key doesn't have a private key") } if signer.PrivateKey.Encrypted { return errors.InvalidArgumentError("signing key is encrypted") }
sig := new(packet.Signature) sig.SigType = sigType sig.PubKeyAlgo = signer.PrivateKey.PubKeyAlgo sig.Hash = config.Hash() sig.CreationTime = config.Now() sig.IssuerKeyId = &signer.PrivateKey.KeyId
h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType) if err != nil { return } io.Copy(wrappedHash, message)
err = sig.Sign(h, signer.PrivateKey, config) if err != nil { return }
return sig.Serialize(w) }
// FileHints contains metadata about encrypted files. This metadata is, itself,
// encrypted.
type FileHints struct { // IsBinary can be set to hint that the contents are binary data.
IsBinary bool // FileName hints at the name of the file that should be written. It's
// truncated to 255 bytes if longer. It may be empty to suggest that the
// file should not be written to disk. It may be equal to "_CONSOLE" to
// suggest the data should not be written to disk.
FileName string // ModTime contains the modification time of the file, or the zero time if not applicable.
ModTime time.Time }
// SymmetricallyEncrypt acts like gpg -c: it encrypts a file with a passphrase.
// The resulting WriteCloser must be closed after the contents of the file have
// been written.
// If config is nil, sensible defaults will be used.
func SymmetricallyEncrypt(ciphertext io.Writer, passphrase []byte, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) { if hints == nil { hints = &FileHints{} }
key, err := packet.SerializeSymmetricKeyEncrypted(ciphertext, passphrase, config) if err != nil { return } w, err := packet.SerializeSymmetricallyEncrypted(ciphertext, config.Cipher(), key, config) if err != nil { return }
literaldata := w if algo := config.Compression(); algo != packet.CompressionNone { var compConfig *packet.CompressionConfig if config != nil { compConfig = config.CompressionConfig } literaldata, err = packet.SerializeCompressed(w, algo, compConfig) if err != nil { return } }
var epochSeconds uint32 if !hints.ModTime.IsZero() { epochSeconds = uint32(hints.ModTime.Unix()) } return packet.SerializeLiteral(literaldata, hints.IsBinary, hints.FileName, epochSeconds) }
// intersectPreferences mutates and returns a prefix of a that contains only
// the values in the intersection of a and b. The order of a is preserved.
func intersectPreferences(a []uint8, b []uint8) (intersection []uint8) { var j int for _, v := range a { for _, v2 := range b { if v == v2 { a[j] = v j++ break } } }
return a[:j] }
func hashToHashId(h crypto.Hash) uint8 { v, ok := s2k.HashToHashId(h) if !ok { panic("tried to convert unknown hash") } return v }
// Encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) { var signer *packet.PrivateKey if signed != nil { signKey, ok := signed.signingKey(config.Now()) if !ok { return nil, errors.InvalidArgumentError("no valid signing keys") } signer = signKey.PrivateKey if signer == nil { return nil, errors.InvalidArgumentError("no private key in signing key") } if signer.Encrypted { return nil, errors.InvalidArgumentError("signing key must be decrypted") } }
// These are the possible ciphers that we'll use for the message.
candidateCiphers := []uint8{ uint8(packet.CipherAES128), uint8(packet.CipherAES256), uint8(packet.CipherCAST5), } // These are the possible hash functions that we'll use for the signature.
candidateHashes := []uint8{ hashToHashId(crypto.SHA256), hashToHashId(crypto.SHA512), hashToHashId(crypto.SHA1), hashToHashId(crypto.RIPEMD160), } // In the event that a recipient doesn't specify any supported ciphers
// or hash functions, these are the ones that we assume that every
// implementation supports.
defaultCiphers := candidateCiphers[len(candidateCiphers)-1:] defaultHashes := candidateHashes[len(candidateHashes)-1:]
encryptKeys := make([]Key, len(to)) for i := range to { var ok bool encryptKeys[i], ok = to[i].encryptionKey(config.Now()) if !ok { return nil, errors.InvalidArgumentError("cannot encrypt a message to key id " + strconv.FormatUint(to[i].PrimaryKey.KeyId, 16) + " because it has no encryption keys") }
sig := to[i].primaryIdentity().SelfSignature
preferredSymmetric := sig.PreferredSymmetric if len(preferredSymmetric) == 0 { preferredSymmetric = defaultCiphers } preferredHashes := sig.PreferredHash if len(preferredHashes) == 0 { preferredHashes = defaultHashes } candidateCiphers = intersectPreferences(candidateCiphers, preferredSymmetric) candidateHashes = intersectPreferences(candidateHashes, preferredHashes) }
if len(candidateCiphers) == 0 || len(candidateHashes) == 0 { return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common algorithms") }
cipher := packet.CipherFunction(candidateCiphers[0]) // If the cipher specified by config is a candidate, we'll use that.
configuredCipher := config.Cipher() for _, c := range candidateCiphers { cipherFunc := packet.CipherFunction(c) if cipherFunc == configuredCipher { cipher = cipherFunc break } }
var hash crypto.Hash for _, hashId := range candidateHashes { if h, ok := s2k.HashIdToHash(hashId); ok && h.Available() { hash = h break } }
// If the hash specified by config is a candidate, we'll use that.
if configuredHash := config.Hash(); configuredHash.Available() { for _, hashId := range candidateHashes { if h, ok := s2k.HashIdToHash(hashId); ok && h == configuredHash { hash = h break } } }
if hash == 0 { hashId := candidateHashes[0] name, ok := s2k.HashIdToString(hashId) if !ok { name = "#" + strconv.Itoa(int(hashId)) } return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)") }
symKey := make([]byte, cipher.KeySize()) if _, err := io.ReadFull(config.Random(), symKey); err != nil { return nil, err }
for _, key := range encryptKeys { if err := packet.SerializeEncryptedKey(ciphertext, key.PublicKey, cipher, symKey, config); err != nil { return nil, err } }
encryptedData, err := packet.SerializeSymmetricallyEncrypted(ciphertext, cipher, symKey, config) if err != nil { return }
if signer != nil { ops := &packet.OnePassSignature{ SigType: packet.SigTypeBinary, Hash: hash, PubKeyAlgo: signer.PubKeyAlgo, KeyId: signer.KeyId, IsLast: true, } if err := ops.Serialize(encryptedData); err != nil { return nil, err } }
if hints == nil { hints = &FileHints{} }
w := encryptedData if signer != nil { // If we need to write a signature packet after the literal
// data then we need to stop literalData from closing
// encryptedData.
w = noOpCloser{encryptedData}
} var epochSeconds uint32 if !hints.ModTime.IsZero() { epochSeconds = uint32(hints.ModTime.Unix()) } literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds) if err != nil { return nil, err }
if signer != nil { return signatureWriter{encryptedData, literalData, hash, hash.New(), signer, config}, nil } return literalData, nil }
// signatureWriter hashes the contents of a message while passing it along to
// literalData. When closed, it closes literalData, writes a signature packet
// to encryptedData and then also closes encryptedData.
type signatureWriter struct { encryptedData io.WriteCloser literalData io.WriteCloser hashType crypto.Hash h hash.Hash signer *packet.PrivateKey config *packet.Config }
func (s signatureWriter) Write(data []byte) (int, error) { s.h.Write(data) return s.literalData.Write(data) }
func (s signatureWriter) Close() error { sig := &packet.Signature{ SigType: packet.SigTypeBinary, PubKeyAlgo: s.signer.PubKeyAlgo, Hash: s.hashType, CreationTime: s.config.Now(), IssuerKeyId: &s.signer.KeyId, }
if err := sig.Sign(s.h, s.signer, s.config); err != nil { return err } if err := s.literalData.Close(); err != nil { return err } if err := sig.Serialize(s.encryptedData); err != nil { return err } return s.encryptedData.Close() }
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer.
// TODO: we have two of these in OpenPGP packages alone. This probably needs
// to be promoted somewhere more common.
type noOpCloser struct { w io.Writer }
func (c noOpCloser) Write(data []byte) (n int, err error) { return c.w.Write(data) }
func (c noOpCloser) Close() error { return nil }
|