|
|
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssh
import ( "bytes" "crypto" "crypto/dsa" "crypto/ecdsa" "crypto/elliptic" "crypto/md5" "crypto/rsa" "crypto/sha256" "crypto/x509" "encoding/asn1" "encoding/base64" "encoding/hex" "encoding/pem" "errors" "fmt" "io" "math/big" "strings"
"golang.org/x/crypto/ed25519" )
// These constants represent the algorithm names for key types supported by this
// package.
const ( KeyAlgoRSA = "ssh-rsa" KeyAlgoDSA = "ssh-dss" KeyAlgoECDSA256 = "ecdsa-sha2-nistp256" KeyAlgoECDSA384 = "ecdsa-sha2-nistp384" KeyAlgoECDSA521 = "ecdsa-sha2-nistp521" KeyAlgoED25519 = "ssh-ed25519" )
// parsePubKey parses a public key of the given algorithm.
// Use ParsePublicKey for keys with prepended algorithm.
func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) { switch algo { case KeyAlgoRSA: return parseRSA(in) case KeyAlgoDSA: return parseDSA(in) case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521: return parseECDSA(in) case KeyAlgoED25519: return parseED25519(in) case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoED25519v01: cert, err := parseCert(in, certToPrivAlgo(algo)) if err != nil { return nil, nil, err } return cert, nil, nil } return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo) }
// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
// (see sshd(8) manual page) once the options and key type fields have been
// removed.
func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) { in = bytes.TrimSpace(in)
i := bytes.IndexAny(in, " \t") if i == -1 { i = len(in) } base64Key := in[:i]
key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key))) n, err := base64.StdEncoding.Decode(key, base64Key) if err != nil { return nil, "", err } key = key[:n] out, err = ParsePublicKey(key) if err != nil { return nil, "", err } comment = string(bytes.TrimSpace(in[i:])) return out, comment, nil }
// ParseKnownHosts parses an entry in the format of the known_hosts file.
//
// The known_hosts format is documented in the sshd(8) manual page. This
// function will parse a single entry from in. On successful return, marker
// will contain the optional marker value (i.e. "cert-authority" or "revoked")
// or else be empty, hosts will contain the hosts that this entry matches,
// pubKey will contain the public key and comment will contain any trailing
// comment at the end of the line. See the sshd(8) manual page for the various
// forms that a host string can take.
//
// The unparsed remainder of the input will be returned in rest. This function
// can be called repeatedly to parse multiple entries.
//
// If no entries were found in the input then err will be io.EOF. Otherwise a
// non-nil err value indicates a parse error.
func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) { for len(in) > 0 { end := bytes.IndexByte(in, '\n') if end != -1 { rest = in[end+1:] in = in[:end] } else { rest = nil }
end = bytes.IndexByte(in, '\r') if end != -1 { in = in[:end] }
in = bytes.TrimSpace(in) if len(in) == 0 || in[0] == '#' { in = rest continue }
i := bytes.IndexAny(in, " \t") if i == -1 { in = rest continue }
// Strip out the beginning of the known_host key.
// This is either an optional marker or a (set of) hostname(s).
keyFields := bytes.Fields(in) if len(keyFields) < 3 || len(keyFields) > 5 { return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data") }
// keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
// list of hosts
marker := "" if keyFields[0][0] == '@' { marker = string(keyFields[0][1:]) keyFields = keyFields[1:] }
hosts := string(keyFields[0]) // keyFields[1] contains the key type (e.g. “ssh-rsa”).
// However, that information is duplicated inside the
// base64-encoded key and so is ignored here.
key := bytes.Join(keyFields[2:], []byte(" ")) if pubKey, comment, err = parseAuthorizedKey(key); err != nil { return "", nil, nil, "", nil, err }
return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil }
return "", nil, nil, "", nil, io.EOF }
// ParseAuthorizedKeys parses a public key from an authorized_keys
// file used in OpenSSH according to the sshd(8) manual page.
func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) { for len(in) > 0 { end := bytes.IndexByte(in, '\n') if end != -1 { rest = in[end+1:] in = in[:end] } else { rest = nil }
end = bytes.IndexByte(in, '\r') if end != -1 { in = in[:end] }
in = bytes.TrimSpace(in) if len(in) == 0 || in[0] == '#' { in = rest continue }
i := bytes.IndexAny(in, " \t") if i == -1 { in = rest continue }
if out, comment, err = parseAuthorizedKey(in[i:]); err == nil { return out, comment, options, rest, nil }
// No key type recognised. Maybe there's an options field at
// the beginning.
var b byte inQuote := false var candidateOptions []string optionStart := 0 for i, b = range in { isEnd := !inQuote && (b == ' ' || b == '\t') if (b == ',' && !inQuote) || isEnd { if i-optionStart > 0 { candidateOptions = append(candidateOptions, string(in[optionStart:i])) } optionStart = i + 1 } if isEnd { break } if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) { inQuote = !inQuote } } for i < len(in) && (in[i] == ' ' || in[i] == '\t') { i++ } if i == len(in) { // Invalid line: unmatched quote
in = rest continue }
in = in[i:] i = bytes.IndexAny(in, " \t") if i == -1 { in = rest continue }
if out, comment, err = parseAuthorizedKey(in[i:]); err == nil { options = candidateOptions return out, comment, options, rest, nil }
in = rest continue }
return nil, "", nil, nil, errors.New("ssh: no key found") }
// ParsePublicKey parses an SSH public key formatted for use in
// the SSH wire protocol according to RFC 4253, section 6.6.
func ParsePublicKey(in []byte) (out PublicKey, err error) { algo, in, ok := parseString(in) if !ok { return nil, errShortRead } var rest []byte out, rest, err = parsePubKey(in, string(algo)) if len(rest) > 0 { return nil, errors.New("ssh: trailing junk in public key") }
return out, err }
// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
// authorized_keys file. The return value ends with newline.
func MarshalAuthorizedKey(key PublicKey) []byte { b := &bytes.Buffer{} b.WriteString(key.Type()) b.WriteByte(' ') e := base64.NewEncoder(base64.StdEncoding, b) e.Write(key.Marshal()) e.Close() b.WriteByte('\n') return b.Bytes() }
// PublicKey is an abstraction of different types of public keys.
type PublicKey interface { // Type returns the key's type, e.g. "ssh-rsa".
Type() string
// Marshal returns the serialized key data in SSH wire format,
// with the name prefix.
Marshal() []byte
// Verify that sig is a signature on the given data using this
// key. This function will hash the data appropriately first.
Verify(data []byte, sig *Signature) error }
// CryptoPublicKey, if implemented by a PublicKey,
// returns the underlying crypto.PublicKey form of the key.
type CryptoPublicKey interface { CryptoPublicKey() crypto.PublicKey }
// A Signer can create signatures that verify against a public key.
type Signer interface { // PublicKey returns an associated PublicKey instance.
PublicKey() PublicKey
// Sign returns raw signature for the given data. This method
// will apply the hash specified for the keytype to the data.
Sign(rand io.Reader, data []byte) (*Signature, error) }
type rsaPublicKey rsa.PublicKey
func (r *rsaPublicKey) Type() string { return "ssh-rsa" }
// parseRSA parses an RSA key according to RFC 4253, section 6.6.
func parseRSA(in []byte) (out PublicKey, rest []byte, err error) { var w struct { E *big.Int N *big.Int Rest []byte `ssh:"rest"` } if err := Unmarshal(in, &w); err != nil { return nil, nil, err }
if w.E.BitLen() > 24 { return nil, nil, errors.New("ssh: exponent too large") } e := w.E.Int64() if e < 3 || e&1 == 0 { return nil, nil, errors.New("ssh: incorrect exponent") }
var key rsa.PublicKey key.E = int(e) key.N = w.N return (*rsaPublicKey)(&key), w.Rest, nil }
func (r *rsaPublicKey) Marshal() []byte { e := new(big.Int).SetInt64(int64(r.E)) // RSA publickey struct layout should match the struct used by
// parseRSACert in the x/crypto/ssh/agent package.
wirekey := struct { Name string E *big.Int N *big.Int }{ KeyAlgoRSA, e, r.N, } return Marshal(&wirekey) }
func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error { if sig.Format != r.Type() { return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type()) } h := crypto.SHA1.New() h.Write(data) digest := h.Sum(nil) return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), crypto.SHA1, digest, sig.Blob) }
func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey { return (*rsa.PublicKey)(r) }
type dsaPublicKey dsa.PublicKey
func (k *dsaPublicKey) Type() string { return "ssh-dss" }
func checkDSAParams(param *dsa.Parameters) error { // SSH specifies FIPS 186-2, which only provided a single size
// (1024 bits) DSA key. FIPS 186-3 allows for larger key
// sizes, which would confuse SSH.
if l := param.P.BitLen(); l != 1024 { return fmt.Errorf("ssh: unsupported DSA key size %d", l) }
return nil }
// parseDSA parses an DSA key according to RFC 4253, section 6.6.
func parseDSA(in []byte) (out PublicKey, rest []byte, err error) { var w struct { P, Q, G, Y *big.Int Rest []byte `ssh:"rest"` } if err := Unmarshal(in, &w); err != nil { return nil, nil, err }
param := dsa.Parameters{ P: w.P, Q: w.Q, G: w.G, } if err := checkDSAParams(¶m); err != nil { return nil, nil, err }
key := &dsaPublicKey{ Parameters: param, Y: w.Y, } return key, w.Rest, nil }
func (k *dsaPublicKey) Marshal() []byte { // DSA publickey struct layout should match the struct used by
// parseDSACert in the x/crypto/ssh/agent package.
w := struct { Name string P, Q, G, Y *big.Int }{ k.Type(), k.P, k.Q, k.G, k.Y, }
return Marshal(&w) }
func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error { if sig.Format != k.Type() { return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) } h := crypto.SHA1.New() h.Write(data) digest := h.Sum(nil)
// Per RFC 4253, section 6.6,
// The value for 'dss_signature_blob' is encoded as a string containing
// r, followed by s (which are 160-bit integers, without lengths or
// padding, unsigned, and in network byte order).
// For DSS purposes, sig.Blob should be exactly 40 bytes in length.
if len(sig.Blob) != 40 { return errors.New("ssh: DSA signature parse error") } r := new(big.Int).SetBytes(sig.Blob[:20]) s := new(big.Int).SetBytes(sig.Blob[20:]) if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) { return nil } return errors.New("ssh: signature did not verify") }
func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey { return (*dsa.PublicKey)(k) }
type dsaPrivateKey struct { *dsa.PrivateKey }
func (k *dsaPrivateKey) PublicKey() PublicKey { return (*dsaPublicKey)(&k.PrivateKey.PublicKey) }
func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) { h := crypto.SHA1.New() h.Write(data) digest := h.Sum(nil) r, s, err := dsa.Sign(rand, k.PrivateKey, digest) if err != nil { return nil, err }
sig := make([]byte, 40) rb := r.Bytes() sb := s.Bytes()
copy(sig[20-len(rb):20], rb) copy(sig[40-len(sb):], sb)
return &Signature{ Format: k.PublicKey().Type(), Blob: sig, }, nil }
type ecdsaPublicKey ecdsa.PublicKey
func (k *ecdsaPublicKey) Type() string { return "ecdsa-sha2-" + k.nistID() }
func (k *ecdsaPublicKey) nistID() string { switch k.Params().BitSize { case 256: return "nistp256" case 384: return "nistp384" case 521: return "nistp521" } panic("ssh: unsupported ecdsa key size") }
type ed25519PublicKey ed25519.PublicKey
func (k ed25519PublicKey) Type() string { return KeyAlgoED25519 }
func parseED25519(in []byte) (out PublicKey, rest []byte, err error) { var w struct { KeyBytes []byte Rest []byte `ssh:"rest"` }
if err := Unmarshal(in, &w); err != nil { return nil, nil, err }
key := ed25519.PublicKey(w.KeyBytes)
return (ed25519PublicKey)(key), w.Rest, nil }
func (k ed25519PublicKey) Marshal() []byte { w := struct { Name string KeyBytes []byte }{ KeyAlgoED25519, []byte(k), } return Marshal(&w) }
func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error { if sig.Format != k.Type() { return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) }
edKey := (ed25519.PublicKey)(k) if ok := ed25519.Verify(edKey, b, sig.Blob); !ok { return errors.New("ssh: signature did not verify") }
return nil }
func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey { return ed25519.PublicKey(k) }
func supportedEllipticCurve(curve elliptic.Curve) bool { return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521() }
// ecHash returns the hash to match the given elliptic curve, see RFC
// 5656, section 6.2.1
func ecHash(curve elliptic.Curve) crypto.Hash { bitSize := curve.Params().BitSize switch { case bitSize <= 256: return crypto.SHA256 case bitSize <= 384: return crypto.SHA384 } return crypto.SHA512 }
// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) { var w struct { Curve string KeyBytes []byte Rest []byte `ssh:"rest"` }
if err := Unmarshal(in, &w); err != nil { return nil, nil, err }
key := new(ecdsa.PublicKey)
switch w.Curve { case "nistp256": key.Curve = elliptic.P256() case "nistp384": key.Curve = elliptic.P384() case "nistp521": key.Curve = elliptic.P521() default: return nil, nil, errors.New("ssh: unsupported curve") }
key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes) if key.X == nil || key.Y == nil { return nil, nil, errors.New("ssh: invalid curve point") } return (*ecdsaPublicKey)(key), w.Rest, nil }
func (k *ecdsaPublicKey) Marshal() []byte { // See RFC 5656, section 3.1.
keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y) // ECDSA publickey struct layout should match the struct used by
// parseECDSACert in the x/crypto/ssh/agent package.
w := struct { Name string ID string Key []byte }{ k.Type(), k.nistID(), keyBytes, }
return Marshal(&w) }
func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error { if sig.Format != k.Type() { return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) }
h := ecHash(k.Curve).New() h.Write(data) digest := h.Sum(nil)
// Per RFC 5656, section 3.1.2,
// The ecdsa_signature_blob value has the following specific encoding:
// mpint r
// mpint s
var ecSig struct { R *big.Int S *big.Int }
if err := Unmarshal(sig.Blob, &ecSig); err != nil { return err }
if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) { return nil } return errors.New("ssh: signature did not verify") }
func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey { return (*ecdsa.PublicKey)(k) }
// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
// *ecdsa.PrivateKey or any other crypto.Signer and returns a
// corresponding Signer instance. ECDSA keys must use P-256, P-384 or
// P-521. DSA keys must use parameter size L1024N160.
func NewSignerFromKey(key interface{}) (Signer, error) { switch key := key.(type) { case crypto.Signer: return NewSignerFromSigner(key) case *dsa.PrivateKey: return newDSAPrivateKey(key) default: return nil, fmt.Errorf("ssh: unsupported key type %T", key) } }
func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) { if err := checkDSAParams(&key.PublicKey.Parameters); err != nil { return nil, err }
return &dsaPrivateKey{key}, nil }
type wrappedSigner struct { signer crypto.Signer pubKey PublicKey }
// NewSignerFromSigner takes any crypto.Signer implementation and
// returns a corresponding Signer interface. This can be used, for
// example, with keys kept in hardware modules.
func NewSignerFromSigner(signer crypto.Signer) (Signer, error) { pubKey, err := NewPublicKey(signer.Public()) if err != nil { return nil, err }
return &wrappedSigner{signer, pubKey}, nil }
func (s *wrappedSigner) PublicKey() PublicKey { return s.pubKey }
func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) { var hashFunc crypto.Hash
switch key := s.pubKey.(type) { case *rsaPublicKey, *dsaPublicKey: hashFunc = crypto.SHA1 case *ecdsaPublicKey: hashFunc = ecHash(key.Curve) case ed25519PublicKey: default: return nil, fmt.Errorf("ssh: unsupported key type %T", key) }
var digest []byte if hashFunc != 0 { h := hashFunc.New() h.Write(data) digest = h.Sum(nil) } else { digest = data }
signature, err := s.signer.Sign(rand, digest, hashFunc) if err != nil { return nil, err }
// crypto.Signer.Sign is expected to return an ASN.1-encoded signature
// for ECDSA and DSA, but that's not the encoding expected by SSH, so
// re-encode.
switch s.pubKey.(type) { case *ecdsaPublicKey, *dsaPublicKey: type asn1Signature struct { R, S *big.Int } asn1Sig := new(asn1Signature) _, err := asn1.Unmarshal(signature, asn1Sig) if err != nil { return nil, err }
switch s.pubKey.(type) { case *ecdsaPublicKey: signature = Marshal(asn1Sig)
case *dsaPublicKey: signature = make([]byte, 40) r := asn1Sig.R.Bytes() s := asn1Sig.S.Bytes() copy(signature[20-len(r):20], r) copy(signature[40-len(s):40], s) } }
return &Signature{ Format: s.pubKey.Type(), Blob: signature, }, nil }
// NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
// or ed25519.PublicKey returns a corresponding PublicKey instance.
// ECDSA keys must use P-256, P-384 or P-521.
func NewPublicKey(key interface{}) (PublicKey, error) { switch key := key.(type) { case *rsa.PublicKey: return (*rsaPublicKey)(key), nil case *ecdsa.PublicKey: if !supportedEllipticCurve(key.Curve) { return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported") } return (*ecdsaPublicKey)(key), nil case *dsa.PublicKey: return (*dsaPublicKey)(key), nil case ed25519.PublicKey: return (ed25519PublicKey)(key), nil default: return nil, fmt.Errorf("ssh: unsupported key type %T", key) } }
// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
// the same keys as ParseRawPrivateKey.
func ParsePrivateKey(pemBytes []byte) (Signer, error) { key, err := ParseRawPrivateKey(pemBytes) if err != nil { return nil, err }
return NewSignerFromKey(key) }
// ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
// key and passphrase. It supports the same keys as
// ParseRawPrivateKeyWithPassphrase.
func ParsePrivateKeyWithPassphrase(pemBytes, passPhrase []byte) (Signer, error) { key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passPhrase) if err != nil { return nil, err }
return NewSignerFromKey(key) }
// encryptedBlock tells whether a private key is
// encrypted by examining its Proc-Type header
// for a mention of ENCRYPTED
// according to RFC 1421 Section 4.6.1.1.
func encryptedBlock(block *pem.Block) bool { return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED") }
// ParseRawPrivateKey returns a private key from a PEM encoded private key. It
// supports RSA (PKCS#1), DSA (OpenSSL), and ECDSA private keys.
func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) { block, _ := pem.Decode(pemBytes) if block == nil { return nil, errors.New("ssh: no key found") }
if encryptedBlock(block) { return nil, errors.New("ssh: cannot decode encrypted private keys") }
switch block.Type { case "RSA PRIVATE KEY": return x509.ParsePKCS1PrivateKey(block.Bytes) case "EC PRIVATE KEY": return x509.ParseECPrivateKey(block.Bytes) case "DSA PRIVATE KEY": return ParseDSAPrivateKey(block.Bytes) case "OPENSSH PRIVATE KEY": return parseOpenSSHPrivateKey(block.Bytes) default: return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type) } }
// ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
// passphrase from a PEM encoded private key. If wrong passphrase, return
// x509.IncorrectPasswordError.
func ParseRawPrivateKeyWithPassphrase(pemBytes, passPhrase []byte) (interface{}, error) { block, _ := pem.Decode(pemBytes) if block == nil { return nil, errors.New("ssh: no key found") } buf := block.Bytes
if encryptedBlock(block) { if x509.IsEncryptedPEMBlock(block) { var err error buf, err = x509.DecryptPEMBlock(block, passPhrase) if err != nil { if err == x509.IncorrectPasswordError { return nil, err } return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err) } } }
switch block.Type { case "RSA PRIVATE KEY": return x509.ParsePKCS1PrivateKey(buf) case "EC PRIVATE KEY": return x509.ParseECPrivateKey(buf) case "DSA PRIVATE KEY": return ParseDSAPrivateKey(buf) case "OPENSSH PRIVATE KEY": return parseOpenSSHPrivateKey(buf) default: return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type) } }
// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
// specified by the OpenSSL DSA man page.
func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) { var k struct { Version int P *big.Int Q *big.Int G *big.Int Pub *big.Int Priv *big.Int } rest, err := asn1.Unmarshal(der, &k) if err != nil { return nil, errors.New("ssh: failed to parse DSA key: " + err.Error()) } if len(rest) > 0 { return nil, errors.New("ssh: garbage after DSA key") }
return &dsa.PrivateKey{ PublicKey: dsa.PublicKey{ Parameters: dsa.Parameters{ P: k.P, Q: k.Q, G: k.G, }, Y: k.Pub, }, X: k.Priv, }, nil }
// Implemented based on the documentation at
// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key
func parseOpenSSHPrivateKey(key []byte) (crypto.PrivateKey, error) { magic := append([]byte("openssh-key-v1"), 0) if !bytes.Equal(magic, key[0:len(magic)]) { return nil, errors.New("ssh: invalid openssh private key format") } remaining := key[len(magic):]
var w struct { CipherName string KdfName string KdfOpts string NumKeys uint32 PubKey []byte PrivKeyBlock []byte }
if err := Unmarshal(remaining, &w); err != nil { return nil, err }
if w.KdfName != "none" || w.CipherName != "none" { return nil, errors.New("ssh: cannot decode encrypted private keys") }
pk1 := struct { Check1 uint32 Check2 uint32 Keytype string Rest []byte `ssh:"rest"` }{}
if err := Unmarshal(w.PrivKeyBlock, &pk1); err != nil { return nil, err }
if pk1.Check1 != pk1.Check2 { return nil, errors.New("ssh: checkint mismatch") }
// we only handle ed25519 and rsa keys currently
switch pk1.Keytype { case KeyAlgoRSA: // https://github.com/openssh/openssh-portable/blob/master/sshkey.c#L2760-L2773
key := struct { N *big.Int E *big.Int D *big.Int Iqmp *big.Int P *big.Int Q *big.Int Comment string Pad []byte `ssh:"rest"` }{}
if err := Unmarshal(pk1.Rest, &key); err != nil { return nil, err }
for i, b := range key.Pad { if int(b) != i+1 { return nil, errors.New("ssh: padding not as expected") } }
pk := &rsa.PrivateKey{ PublicKey: rsa.PublicKey{ N: key.N, E: int(key.E.Int64()), }, D: key.D, Primes: []*big.Int{key.P, key.Q}, }
if err := pk.Validate(); err != nil { return nil, err }
pk.Precompute()
return pk, nil case KeyAlgoED25519: key := struct { Pub []byte Priv []byte Comment string Pad []byte `ssh:"rest"` }{}
if err := Unmarshal(pk1.Rest, &key); err != nil { return nil, err }
if len(key.Priv) != ed25519.PrivateKeySize { return nil, errors.New("ssh: private key unexpected length") }
for i, b := range key.Pad { if int(b) != i+1 { return nil, errors.New("ssh: padding not as expected") } }
pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize)) copy(pk, key.Priv) return &pk, nil default: return nil, errors.New("ssh: unhandled key type") } }
// FingerprintLegacyMD5 returns the user presentation of the key's
// fingerprint as described by RFC 4716 section 4.
func FingerprintLegacyMD5(pubKey PublicKey) string { md5sum := md5.Sum(pubKey.Marshal()) hexarray := make([]string, len(md5sum)) for i, c := range md5sum { hexarray[i] = hex.EncodeToString([]byte{c}) } return strings.Join(hexarray, ":") }
// FingerprintSHA256 returns the user presentation of the key's
// fingerprint as unpadded base64 encoded sha256 hash.
// This format was introduced from OpenSSH 6.8.
// https://www.openssh.com/txt/release-6.8
// https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
func FingerprintSHA256(pubKey PublicKey) string { sha256sum := sha256.Sum256(pubKey.Marshal()) hash := base64.RawStdEncoding.EncodeToString(sha256sum[:]) return "SHA256:" + hash }
|