|
|
package blockchain
import "fmt" import "bytes" import "encoding/hex" import "encoding/binary"
import "github.com/romana/rlog"
import "github.com/deroproject/derosuite/crypto" import "github.com/deroproject/derosuite/config" import "github.com/deroproject/derosuite/cryptonight"
// these are defined in file
//https://github.com/monero-project/monero/src/cryptonote_basic/cryptonote_basic.h
type Block_Header struct { Major_Version uint32 `json:"major_version"` Minor_Version uint32 `json:"minor_version"` Timestamp uint64 `json:"timestamp"` Prev_Hash crypto.Hash `json:"prev_id"` Nonce uint32 `json:"nonce"` }
type Block struct { Block_Header Miner_tx Transaction `json:"miner_tx"` Merkle_Root crypto.Hash `json:"-"` Tx_hashes []crypto.Hash `json:"tx_hashes"`
treehash crypto.Hash }
// see spec here https://cryptonote.org/cns/cns003.txt
// this function gets the block identifier hash
func (bl *Block) GetHash() (hash crypto.Hash) { buf := make([]byte, binary.MaxVarintLen64) long_header := bl.GetBlockWork() length := uint64(len(long_header)) n := binary.PutUvarint(buf, length) //
buf = buf[:n] block_id_blob := append(buf, long_header...)
// keccak hash of this above blob, gives the block id
hash2 := crypto.Keccak256(block_id_blob) return crypto.Hash(hash2) }
// converts a block, into a getwork style work, ready for either submitting the block
// or doing Pow Calculations
func (bl *Block) GetBlockWork() []byte { buf := make([]byte, binary.MaxVarintLen64) header := bl.SerializeHeader() tx_treehash := bl.GetTreeHash() // treehash of all transactions
// length of all transactions
n := binary.PutUvarint(buf, uint64(len(bl.Tx_hashes)+1)) // +1 for miner TX
buf = buf[:n]
long_header := append(header, tx_treehash[:]...) long_header = append(long_header, buf...)
return long_header
}
// Get PoW hash , this is very slow function
func (bl *Block) GetPoWHash() (hash crypto.Hash) { long_header := bl.GetBlockWork() rlog.Tracef(9, "longheader %x\n", long_header) tmphash := cryptonight.SlowHash(long_header) copy(hash[:], tmphash[:32])
return }
// Reward is, total amount in the miner tx - fees
func (bl *Block) GetReward() uint64 { total_amount := bl.Miner_tx.Vout[0].Amount total_fees := uint64(0) // load all the TX and get the fees, since we are in a post rct world
// extract the fees from the rct sig
return total_amount - total_fees }
// serialize block header
func (bl *Block) SerializeHeader() []byte {
var serialised bytes.Buffer
buf := make([]byte, binary.MaxVarintLen64)
n := binary.PutUvarint(buf, uint64(bl.Major_Version)) serialised.Write(buf[:n])
n = binary.PutUvarint(buf, uint64(bl.Minor_Version)) serialised.Write(buf[:n])
n = binary.PutUvarint(buf, bl.Timestamp) serialised.Write(buf[:n])
serialised.Write(bl.Prev_Hash[:32]) // write previous ID
binary.LittleEndian.PutUint32(buf[0:8], bl.Nonce) // check whether it needs to be big endian
serialised.Write(buf[:4])
return serialised.Bytes()
}
// serialize entire block ( block_header + miner_tx + tx_list )
func (bl *Block) Serialize() []byte { var serialized bytes.Buffer buf := make([]byte, binary.MaxVarintLen64)
header := bl.SerializeHeader() serialized.Write(header)
// miner tx should always be coinbase
minex_tx := bl.Miner_tx.Serialize() serialized.Write(minex_tx)
//fmt.Printf("serializing tx hashes %d\n", len(bl.Tx_hashes))
n := binary.PutUvarint(buf, uint64(len(bl.Tx_hashes))) serialized.Write(buf[:n])
for _, hash := range bl.Tx_hashes { serialized.Write(hash[:]) }
return serialized.Bytes() }
// get block transactions tree hash
func (bl *Block) GetTreeHash() (hash crypto.Hash) { var hash_list []crypto.Hash
hash_list = append(hash_list, bl.Miner_tx.GetHash()) // add all the remaining hashes
for i := range bl.Tx_hashes { hash_list = append(hash_list, bl.Tx_hashes[i]) }
return TreeHash(hash_list)
}
// input is the list of transactions hashes
func TreeHash(hashes []crypto.Hash) (hash crypto.Hash) {
switch len(hashes) { case 0: panic("Treehash cannot have 0 transactions, atleast miner tx will be present") case 1: copy(hash[:], hashes[0][:32]) case 2: var buf []byte for i := 0; i < len(hashes); i++ { buf = append(buf, hashes[i][:32]...) } tmp_hash := crypto.Keccak256(buf) copy(hash[:], tmp_hash[:32])
default:
count := uint64(len(hashes)) cnt := tree_hash_cnt(count)
//fmt.Printf("cnt %d count %d\n",cnt, count)
ints := make([]byte, 32*cnt, 32*cnt)
hashes_buf := make([]byte, 32*count, 32*count)
for i := uint64(0); i < count; i++ { copy(hashes_buf[i*32:], hashes[i][:32]) // copy hashes 1 by 1
}
for i := uint64(0); i < ((2 * cnt) - count); i++ { copy(ints[i*32:], hashes[i][:32]) // copy hashes 1 by 1
}
i := ((2 * cnt) - count) j := ((2 * cnt) - count) for ; j < cnt; i, j = i+2, j+1 { hash := crypto.Keccak256(hashes_buf[i*32 : (i*32)+64]) // find hash of 64 bytes
copy(ints[j*32:], hash[:32]) } if i != count { panic("please fix tree hash") }
for cnt > 2 { cnt = cnt >> 1 i = 0 j = 0 for ; j < cnt; i, j = i+2, j+1 { hash := crypto.Keccak256(ints[i*32 : (i*32)+64]) // find hash of 64 bytes
copy(ints[j*32:], hash[:32]) } }
hash = crypto.Hash(crypto.Keccak256(ints[0:64])) // find hash of 64 bytes
} return }
// see crypto/tree-hash.c
// this function has a naughty history
func tree_hash_cnt(count uint64) uint64 { pow := uint64(2) for pow < count { pow = pow << 1 } return pow >> 1 }
func (bl *Block) Deserialize(buf []byte) (err error) { done := 0 var tmp uint64
defer func() { if r := recover(); r != nil { logger.Warnf("Panic while deserialising block, block hex_dump below to make a testcase/debug\n") logger.Warnf("%s", hex.EncodeToString(buf)) err = fmt.Errorf("Invalid Block") return } }()
tmp, done = binary.Uvarint(buf) if done <= 0 { return fmt.Errorf("Invalid Version in Block\n") } buf = buf[done:]
bl.Major_Version = uint32(tmp)
if uint64(bl.Major_Version) != tmp { return fmt.Errorf("Invalid Block major version") }
tmp, done = binary.Uvarint(buf) if done <= 0 { return fmt.Errorf("Invalid minor Version in Block\n") } buf = buf[done:]
bl.Minor_Version = uint32(tmp)
if uint64(bl.Minor_Version) != tmp { return fmt.Errorf("Invalid Block minor version") }
bl.Timestamp, done = binary.Uvarint(buf) if done <= 0 { return fmt.Errorf("Invalid Timestamp in Block\n") } buf = buf[done:]
copy(bl.Prev_Hash[:], buf[:32]) // hash is always 32 byte
buf = buf[32:]
bl.Nonce = binary.LittleEndian.Uint32(buf) buf = buf[4:] // nonce is always 4 bytes
// read and parse transaction
err = bl.Miner_tx.DeserializeHeader(buf)
if err != nil { return fmt.Errorf("Cannot parse miner TX %x", buf) }
// if tx was parse, make sure it's coin base
if len(bl.Miner_tx.Vin) != 1 || bl.Miner_tx.Vin[0].(Txin_gen).Height > config.MAX_CHAIN_HEIGHT { // serialize transaction again to get the tx size, so as parsing could continue
return fmt.Errorf("Invalid Miner TX") }
miner_tx_serialized_size := bl.Miner_tx.Serialize() buf = buf[len(miner_tx_serialized_size):]
//fmt.Printf("miner tx %x\n", miner_tx_serialized_size)
// read number of transactions
tx_count, done := binary.Uvarint(buf) if done <= 0 { return fmt.Errorf("Invalid Tx count in Block\n") } buf = buf[done:]
// remember first tx is merkle root
for i := uint64(0); i < tx_count; i++ { //fmt.Printf("Parsing transaction hash %d tx_count %d\n", i, tx_count)
var h crypto.Hash copy(h[:], buf[:32]) buf = buf[32:]
bl.Tx_hashes = append(bl.Tx_hashes, h) }
//fmt.Printf("%d member in tx hashes \n",len(bl.Tx_hashes))
return
}
|