|
|
// Copyright 2017-2018 DERO Project. All rights reserved.
// Use of this source code in any form is governed by RESEARCH license.
// license can be found in the LICENSE file.
// GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8
//
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package ringct
import "io" import "fmt" import "crypto/rand"
import "github.com/arnaucode/derosuite/crypto"
const KeyLength = 32
// Key can be a Scalar or a Point
type Key [KeyLength]byte
func (k Key) MarshalText() ([]byte, error) { return []byte(fmt.Sprintf("%x", k[:])), nil }
func (k Key) String() string { return fmt.Sprintf("%x", k[:]) }
func (p *Key) FromBytes(b [KeyLength]byte) { *p = b }
func (p *Key) ToBytes() (result [KeyLength]byte) { result = [KeyLength]byte(*p) return }
func (p *Key) PubKey() (pubKey *Key) { point := new(ExtendedGroupElement) GeScalarMultBase(point, p) pubKey = new(Key) point.ToBytes(pubKey) return }
// Creates a point on the Edwards Curve by hashing the key
func (p *Key) HashToEC() (result *ExtendedGroupElement) { result = new(ExtendedGroupElement) var p1 ProjectiveGroupElement var p2 CompletedGroupElement h := Key(crypto.Keccak256(p[:])) p1.FromBytes(&h) GeMul8(&p2, &p1) p2.ToExtended(result) return }
func (p *Key) HashToPoint() (result Key) { extended := p.HashToEC() extended.ToBytes(&result) return } func RandomScalar() (result *Key) { result = new(Key) var reduceFrom [KeyLength * 2]byte tmp := make([]byte, KeyLength*2) rand.Read(tmp) copy(reduceFrom[:], tmp) ScReduce(result, &reduceFrom) return }
func NewKeyPair() (privKey *Key, pubKey *Key) { privKey = RandomScalar() pubKey = privKey.PubKey() return }
func ParseKey(buf io.Reader) (result Key, err error) { key := make([]byte, KeyLength) if _, err = buf.Read(key); err != nil { return } copy(result[:], key) return }
/* //does a * G where a is a scalar and G is the curve basepoint
key scalarmultBase(const key & a) { ge_p3 point; key aG; sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand
ge_scalarmult_base(&point, aG.bytes); ge_p3_tobytes(aG.bytes, &point); return aG; } */ //does a * G where a is a scalar and G is the curve basepoint
func ScalarmultBase(a Key) (aG Key) { reduce32copy := a ScReduce32(&reduce32copy) point := new(ExtendedGroupElement) GeScalarMultBase(point, &a) point.ToBytes(&aG) return aG }
// generates a key which can be used as private key or mask
// this function is similiar to RandomScalar except for reduce32, TODO can we merge both
func skGen() Key { skey := RandomScalar() ScReduce32(skey) return *skey }
func (k *Key) ToExtended() (result *ExtendedGroupElement) { result = new(ExtendedGroupElement) result.FromBytes(k) return }
// bothe the function resturn identity of the ed25519 curve
func identity() (result *Key) { result = new(Key) result[0] = 1 return } func CurveIdentity() (result Key) { result = Identity return result }
func CurveOrder() (result Key) { result = L return result }
// convert a uint64 to a scalar
func d2h(val uint64) (result *Key) { result = new(Key) for i := 0; val > 0; i++ { result[i] = byte(val & 0xFF) val /= 256 } return }
//32 byte key to uint long long
// if the key holds a value > 2^64
// then the value in the first 8 bytes is returned
func h2d(input Key) (value uint64) { for j := 7; j >= 0; j-- { value = (value*256 + uint64(input[j])) } return value }
func HashToScalar(data ...[]byte) (result *Key) { result = new(Key) *result = Key(crypto.Keccak256(data...)) ScReduce32(result) return }
// does a * P where a is a scalar and P is an arbitrary point
func ScalarMultKey(Point *Key, scalar *Key) (result *Key) { P := new(ExtendedGroupElement) P.FromBytes(Point) resultPoint := new(ProjectiveGroupElement) GeScalarMult(resultPoint, scalar, P) result = new(Key) resultPoint.ToBytes(result) return }
// multiply a scalar by H (second curve point of Pedersen Commitment)
func ScalarMultH(scalar *Key) (result *Key) { h := new(ExtendedGroupElement) h.FromBytes(&H) resultPoint := new(ProjectiveGroupElement) GeScalarMult(resultPoint, scalar, h) result = new(Key) resultPoint.ToBytes(result) return }
// add two points together
func AddKeys(sum, k1, k2 *Key) { a := k1.ToExtended() b := new(CachedGroupElement) k2.ToExtended().ToCached(b) c := new(CompletedGroupElement) geAdd(c, a, b) tmp := new(ExtendedGroupElement) c.ToExtended(tmp) tmp.ToBytes(sum) return }
// compute a*G + b*B
func AddKeys2(result, a, b, B *Key) { BPoint := B.ToExtended() RPoint := new(ProjectiveGroupElement) GeDoubleScalarMultVartime(RPoint, b, BPoint, a) RPoint.ToBytes(result) return }
//addKeys3
//aAbB = a*A + b*B where a, b are scalars, A, B are curve points
//B must be input after applying "precomp"
func AddKeys3(result *Key, a *Key, A *Key, b *Key, B_Precomputed *[8]CachedGroupElement) { A_Point := new(ExtendedGroupElement) A_Point.FromBytes(A)
result_projective := new(ProjectiveGroupElement) GeDoubleScalarMultPrecompVartime(result_projective, a, A_Point, b, B_Precomputed) result_projective.ToBytes(result)
}
// subtract two points A - B
func SubKeys(diff, k1, k2 *Key) { a := k1.ToExtended() b := new(CachedGroupElement) k2.ToExtended().ToCached(b) c := new(CompletedGroupElement) geSub(c, a, b) tmp := new(ExtendedGroupElement) c.ToExtended(tmp) tmp.ToBytes(diff) return }
// this gives you a commitment from an amount
// this is used to convert tx fee or miner tx amount to commitment
func Commitment_From_Amount(amount uint64) Key { return *(ScalarMultH(d2h(amount))) }
// this is used to convert miner tx commitment to mask
// equivalent to rctOps.cpp zeroCommit
func ZeroCommitment_From_Amount(amount uint64) Key { mask := *(identity()) mask = ScalarmultBase(mask) am := d2h(amount) bH := ScalarMultH(am) AddKeys(&mask, &mask, bH) return mask }
|