|
|
// The digraph command performs queries over unlabelled directed graphs
// represented in text form. It is intended to integrate nicely with
// typical UNIX command pipelines.
//
// Since directed graphs (import graphs, reference graphs, call graphs,
// etc) often arise during software tool development and debugging, this
// command is included in the go.tools repository.
//
// TODO(adonovan):
// - support input files other than stdin
// - suport alternative formats (AT&T GraphViz, CSV, etc),
// a comment syntax, etc.
// - allow queries to nest, like Blaze query language.
//
package main // import "golang.org/x/tools/cmd/digraph"
import ( "bufio" "bytes" "errors" "flag" "fmt" "io" "os" "sort" "strconv" "unicode" "unicode/utf8" )
const Usage = `digraph: queries over directed graphs in text form.
Graph format:
Each line contains zero or more words. Words are separated by unquoted whitespace; words may contain Go-style double-quoted portions, allowing spaces and other characters to be expressed.
Each field declares a node, and if there are more than one, an edge from the first to each subsequent one. The graph is provided on the standard input.
For instance, the following (acyclic) graph specifies a partial order among the subtasks of getting dressed:
% cat clothes.txt socks shoes "boxer shorts" pants pants belt shoes shirt tie sweater sweater jacket hat
The line "shirt tie sweater" indicates the two edges shirt -> tie and shirt -> sweater, not shirt -> tie -> sweater.
Supported queries:
nodes the set of all nodes degree the in-degree and out-degree of each node. preds <label> ... the set of immediate predecessors of the specified nodes succs <label> ... the set of immediate successors of the specified nodes forward <label> ... the set of nodes transitively reachable from the specified nodes reverse <label> ... the set of nodes that transitively reach the specified nodes somepath <label> <label> the list of nodes on some arbitrary path from the first node to the second allpaths <label> <label> the set of nodes on all paths from the first node to the second sccs all strongly connected components (one per line) scc <label> the set of nodes nodes strongly connected to the specified one
Example usage:
Show the transitive closure of imports of the digraph tool itself: % go list -f '{{.ImportPath}}{{.Imports}}' ... | tr '[]' ' ' | digraph forward golang.org/x/tools/cmd/digraph
Show which clothes (see above) must be donned before a jacket: % digraph reverse jacket <clothes.txt
`
func main() { flag.Parse()
args := flag.Args() if len(args) == 0 { fmt.Println(Usage) return }
if err := digraph(args[0], args[1:]); err != nil { fmt.Fprintf(os.Stderr, "digraph: %s\n", err) os.Exit(1) } }
type nodelist []string
func (l nodelist) println(sep string) { for i, label := range l { if i > 0 { fmt.Fprint(stdout, sep) } fmt.Fprint(stdout, label) } fmt.Fprintln(stdout) }
type nodeset map[string]bool
func (s nodeset) sort() nodelist { labels := make(nodelist, len(s)) var i int for label := range s { labels[i] = label i++ } sort.Strings(labels) return labels }
func (s nodeset) addAll(x nodeset) { for label := range x { s[label] = true } }
// A graph maps nodes to the non-nil set of their immediate successors.
type graph map[string]nodeset
func (g graph) addNode(label string) nodeset { edges := g[label] if edges == nil { edges = make(nodeset) g[label] = edges } return edges }
func (g graph) addEdges(from string, to ...string) { edges := g.addNode(from) for _, to := range to { g.addNode(to) edges[to] = true } }
func (g graph) reachableFrom(roots nodeset) nodeset { seen := make(nodeset) var visit func(label string) visit = func(label string) { if !seen[label] { seen[label] = true for e := range g[label] { visit(e) } } } for root := range roots { visit(root) } return seen }
func (g graph) transpose() graph { rev := make(graph) for label, edges := range g { rev.addNode(label) for succ := range edges { rev.addEdges(succ, label) } } return rev }
func (g graph) sccs() []nodeset { // Kosaraju's algorithm---Tarjan is overkill here.
// Forward pass.
S := make(nodelist, 0, len(g)) // postorder stack
seen := make(nodeset) var visit func(label string) visit = func(label string) { if !seen[label] { seen[label] = true for e := range g[label] { visit(e) } S = append(S, label) } } for label := range g { visit(label) }
// Reverse pass.
rev := g.transpose() var scc nodeset seen = make(nodeset) var rvisit func(label string) rvisit = func(label string) { if !seen[label] { seen[label] = true scc[label] = true for e := range rev[label] { rvisit(e) } } } var sccs []nodeset for len(S) > 0 { top := S[len(S)-1] S = S[:len(S)-1] // pop
if !seen[top] { scc = make(nodeset) rvisit(top) sccs = append(sccs, scc) } } return sccs }
func parse(rd io.Reader) (graph, error) { g := make(graph)
var linenum int in := bufio.NewScanner(rd) for in.Scan() { linenum++ // Split into words, honoring double-quotes per Go spec.
words, err := split(in.Text()) if err != nil { return nil, fmt.Errorf("at line %d: %v", linenum, err) } if len(words) > 0 { g.addEdges(words[0], words[1:]...) } } if err := in.Err(); err != nil { return nil, err } return g, nil }
var stdin io.Reader = os.Stdin var stdout io.Writer = os.Stdout
func digraph(cmd string, args []string) error { // Parse the input graph.
g, err := parse(stdin) if err != nil { return err }
// Parse the command line.
switch cmd { case "nodes": if len(args) != 0 { return fmt.Errorf("usage: digraph nodes") } nodes := make(nodeset) for label := range g { nodes[label] = true } nodes.sort().println("\n")
case "degree": if len(args) != 0 { return fmt.Errorf("usage: digraph degree") } nodes := make(nodeset) for label := range g { nodes[label] = true } rev := g.transpose() for _, label := range nodes.sort() { fmt.Fprintf(stdout, "%d\t%d\t%s\n", len(rev[label]), len(g[label]), label) }
case "succs", "preds": if len(args) == 0 { return fmt.Errorf("usage: digraph %s <label> ...", cmd) } g := g if cmd == "preds" { g = g.transpose() } result := make(nodeset) for _, root := range args { edges := g[root] if edges == nil { return fmt.Errorf("no such node %q", root) } result.addAll(edges) } result.sort().println("\n")
case "forward", "reverse": if len(args) == 0 { return fmt.Errorf("usage: digraph %s <label> ...", cmd) } roots := make(nodeset) for _, root := range args { if g[root] == nil { return fmt.Errorf("no such node %q", root) } roots[root] = true } g := g if cmd == "reverse" { g = g.transpose() } g.reachableFrom(roots).sort().println("\n")
case "somepath": if len(args) != 2 { return fmt.Errorf("usage: digraph somepath <from> <to>") } from, to := args[0], args[1] if g[from] == nil { return fmt.Errorf("no such 'from' node %q", from) } if g[to] == nil { return fmt.Errorf("no such 'to' node %q", to) }
seen := make(nodeset) var visit func(path nodelist, label string) bool visit = func(path nodelist, label string) bool { if !seen[label] { seen[label] = true if label == to { append(path, label).println("\n") return true // unwind
} for e := range g[label] { if visit(append(path, label), e) { return true } } } return false } if !visit(make(nodelist, 0, 100), from) { return fmt.Errorf("no path from %q to %q", args[0], args[1]) }
case "allpaths": if len(args) != 2 { return fmt.Errorf("usage: digraph allpaths <from> <to>") } from, to := args[0], args[1] if g[from] == nil { return fmt.Errorf("no such 'from' node %q", from) } if g[to] == nil { return fmt.Errorf("no such 'to' node %q", to) }
seen := make(nodeset) // value of seen[x] indicates whether x is on some path to 'to'
var visit func(label string) bool visit = func(label string) bool { reachesTo, ok := seen[label] if !ok { reachesTo = label == to
seen[label] = reachesTo for e := range g[label] { if visit(e) { reachesTo = true } } seen[label] = reachesTo } return reachesTo } if !visit(from) { return fmt.Errorf("no path from %q to %q", from, to) } for label, reachesTo := range seen { if !reachesTo { delete(seen, label) } } seen.sort().println("\n")
case "sccs": if len(args) != 0 { return fmt.Errorf("usage: digraph sccs") } for _, scc := range g.sccs() { scc.sort().println(" ") }
case "scc": if len(args) != 1 { return fmt.Errorf("usage: digraph scc <label>") } label := args[0] if g[label] == nil { return fmt.Errorf("no such node %q", label) } for _, scc := range g.sccs() { if scc[label] { scc.sort().println("\n") break } }
default: return fmt.Errorf("no such command %q", cmd) }
return nil }
// -- Utilities --------------------------------------------------------
// split splits a line into words, which are generally separated by
// spaces, but Go-style double-quoted string literals are also supported.
// (This approximates the behaviour of the Bourne shell.)
//
// `one "two three"` -> ["one" "two three"]
// `a"\n"b` -> ["a\nb"]
//
func split(line string) ([]string, error) { var ( words []string inWord bool current bytes.Buffer )
for len(line) > 0 { r, size := utf8.DecodeRuneInString(line) if unicode.IsSpace(r) { if inWord { words = append(words, current.String()) current.Reset() inWord = false } } else if r == '"' { var ok bool size, ok = quotedLength(line) if !ok { return nil, errors.New("invalid quotation") } s, err := strconv.Unquote(line[:size]) if err != nil { return nil, err } current.WriteString(s) inWord = true } else { current.WriteRune(r) inWord = true } line = line[size:] } if inWord { words = append(words, current.String()) } return words, nil }
// quotedLength returns the length in bytes of the prefix of input that
// contain a possibly-valid double-quoted Go string literal.
//
// On success, n is at least two (""); input[:n] may be passed to
// strconv.Unquote to interpret its value, and input[n:] contains the
// rest of the input.
//
// On failure, quotedLength returns false, and the entire input can be
// passed to strconv.Unquote if an informative error message is desired.
//
// quotedLength does not and need not detect all errors, such as
// invalid hex or octal escape sequences, since it assumes
// strconv.Unquote will be applied to the prefix. It guarantees only
// that if there is a prefix of input containing a valid string literal,
// its length is returned.
//
// TODO(adonovan): move this into a strconv-like utility package.
//
func quotedLength(input string) (n int, ok bool) { var offset int
// next returns the rune at offset, or -1 on EOF.
// offset advances to just after that rune.
next := func() rune { if offset < len(input) { r, size := utf8.DecodeRuneInString(input[offset:]) offset += size return r } return -1 }
if next() != '"' { return // error: not a quotation
}
for { r := next() if r == '\n' || r < 0 { return // error: string literal not terminated
} if r == '"' { return offset, true // success
} if r == '\\' { var skip int switch next() { case 'a', 'b', 'f', 'n', 'r', 't', 'v', '\\', '"': skip = 0 case '0', '1', '2', '3', '4', '5', '6', '7': skip = 2 case 'x': skip = 2 case 'u': skip = 4 case 'U': skip = 8 default: return // error: invalid escape
}
for i := 0; i < skip; i++ { next() } } } }
|