|
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// This file implements the BUILD phase of SSA construction.
//
// SSA construction has two phases, CREATE and BUILD. In the CREATE phase
// (create.go), all packages are constructed and type-checked and
// definitions of all package members are created, method-sets are
// computed, and wrapper methods are synthesized.
// ssa.Packages are created in arbitrary order.
//
// In the BUILD phase (builder.go), the builder traverses the AST of
// each Go source function and generates SSA instructions for the
// function body. Initializer expressions for package-level variables
// are emitted to the package's init() function in the order specified
// by go/types.Info.InitOrder, then code for each function in the
// package is generated in lexical order.
// The BUILD phases for distinct packages are independent and are
// executed in parallel.
//
// TODO(adonovan): indeed, building functions is now embarrassingly parallel.
// Audit for concurrency then benchmark using more goroutines.
//
// The builder's and Program's indices (maps) are populated and
// mutated during the CREATE phase, but during the BUILD phase they
// remain constant. The sole exception is Prog.methodSets and its
// related maps, which are protected by a dedicated mutex.
import ( "fmt" "go/ast" exact "go/constant" "go/token" "go/types" "os" "sync" )
type opaqueType struct { types.Type name string }
func (t *opaqueType) String() string { return t.name }
var ( varOk = newVar("ok", tBool) varIndex = newVar("index", tInt)
// Type constants.
tBool = types.Typ[types.Bool] tByte = types.Typ[types.Byte] tInt = types.Typ[types.Int] tInvalid = types.Typ[types.Invalid] tString = types.Typ[types.String] tUntypedNil = types.Typ[types.UntypedNil] tRangeIter = &opaqueType{nil, "iter"} // the type of all "range" iterators
tEface = types.NewInterface(nil, nil).Complete()
// SSA Value constants.
vZero = intConst(0) vOne = intConst(1) vTrue = NewConst(exact.MakeBool(true), tBool) )
// builder holds state associated with the package currently being built.
// Its methods contain all the logic for AST-to-SSA conversion.
type builder struct{}
// cond emits to fn code to evaluate boolean condition e and jump
// to t or f depending on its value, performing various simplifications.
//
// Postcondition: fn.currentBlock is nil.
//
func (b *builder) cond(fn *Function, e ast.Expr, t, f *BasicBlock) { switch e := e.(type) { case *ast.ParenExpr: b.cond(fn, e.X, t, f) return
case *ast.BinaryExpr: switch e.Op { case token.LAND: ltrue := fn.newBasicBlock("cond.true") b.cond(fn, e.X, ltrue, f) fn.currentBlock = ltrue b.cond(fn, e.Y, t, f) return
case token.LOR: lfalse := fn.newBasicBlock("cond.false") b.cond(fn, e.X, t, lfalse) fn.currentBlock = lfalse b.cond(fn, e.Y, t, f) return }
case *ast.UnaryExpr: if e.Op == token.NOT { b.cond(fn, e.X, f, t) return } }
// A traditional compiler would simplify "if false" (etc) here
// but we do not, for better fidelity to the source code.
//
// The value of a constant condition may be platform-specific,
// and may cause blocks that are reachable in some configuration
// to be hidden from subsequent analyses such as bug-finding tools.
emitIf(fn, b.expr(fn, e), t, f) }
// logicalBinop emits code to fn to evaluate e, a &&- or
// ||-expression whose reified boolean value is wanted.
// The value is returned.
//
func (b *builder) logicalBinop(fn *Function, e *ast.BinaryExpr) Value { rhs := fn.newBasicBlock("binop.rhs") done := fn.newBasicBlock("binop.done")
// T(e) = T(e.X) = T(e.Y) after untyped constants have been
// eliminated.
// TODO(adonovan): not true; MyBool==MyBool yields UntypedBool.
t := fn.Pkg.typeOf(e)
var short Value // value of the short-circuit path
switch e.Op { case token.LAND: b.cond(fn, e.X, rhs, done) short = NewConst(exact.MakeBool(false), t)
case token.LOR: b.cond(fn, e.X, done, rhs) short = NewConst(exact.MakeBool(true), t) }
// Is rhs unreachable?
if rhs.Preds == nil { // Simplify false&&y to false, true||y to true.
fn.currentBlock = done return short }
// Is done unreachable?
if done.Preds == nil { // Simplify true&&y (or false||y) to y.
fn.currentBlock = rhs return b.expr(fn, e.Y) }
// All edges from e.X to done carry the short-circuit value.
var edges []Value for range done.Preds { edges = append(edges, short) }
// The edge from e.Y to done carries the value of e.Y.
fn.currentBlock = rhs edges = append(edges, b.expr(fn, e.Y)) emitJump(fn, done) fn.currentBlock = done
phi := &Phi{Edges: edges, Comment: e.Op.String()} phi.pos = e.OpPos phi.typ = t return done.emit(phi) }
// exprN lowers a multi-result expression e to SSA form, emitting code
// to fn and returning a single Value whose type is a *types.Tuple.
// The caller must access the components via Extract.
//
// Multi-result expressions include CallExprs in a multi-value
// assignment or return statement, and "value,ok" uses of
// TypeAssertExpr, IndexExpr (when X is a map), and UnaryExpr (when Op
// is token.ARROW).
//
func (b *builder) exprN(fn *Function, e ast.Expr) Value { typ := fn.Pkg.typeOf(e).(*types.Tuple) switch e := e.(type) { case *ast.ParenExpr: return b.exprN(fn, e.X)
case *ast.CallExpr: // Currently, no built-in function nor type conversion
// has multiple results, so we can avoid some of the
// cases for single-valued CallExpr.
var c Call b.setCall(fn, e, &c.Call) c.typ = typ return fn.emit(&c)
case *ast.IndexExpr: mapt := fn.Pkg.typeOf(e.X).Underlying().(*types.Map) lookup := &Lookup{ X: b.expr(fn, e.X), Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()), CommaOk: true, } lookup.setType(typ) lookup.setPos(e.Lbrack) return fn.emit(lookup)
case *ast.TypeAssertExpr: return emitTypeTest(fn, b.expr(fn, e.X), typ.At(0).Type(), e.Lparen)
case *ast.UnaryExpr: // must be receive <-
unop := &UnOp{ Op: token.ARROW, X: b.expr(fn, e.X), CommaOk: true, } unop.setType(typ) unop.setPos(e.OpPos) return fn.emit(unop) } panic(fmt.Sprintf("exprN(%T) in %s", e, fn)) }
// builtin emits to fn SSA instructions to implement a call to the
// built-in function obj with the specified arguments
// and return type. It returns the value defined by the result.
//
// The result is nil if no special handling was required; in this case
// the caller should treat this like an ordinary library function
// call.
//
func (b *builder) builtin(fn *Function, obj *types.Builtin, args []ast.Expr, typ types.Type, pos token.Pos) Value { switch obj.Name() { case "make": switch typ.Underlying().(type) { case *types.Slice: n := b.expr(fn, args[1]) m := n if len(args) == 3 { m = b.expr(fn, args[2]) } if m, ok := m.(*Const); ok { // treat make([]T, n, m) as new([m]T)[:n]
cap := m.Int64() at := types.NewArray(typ.Underlying().(*types.Slice).Elem(), cap) alloc := emitNew(fn, at, pos) alloc.Comment = "makeslice" v := &Slice{ X: alloc, High: n, } v.setPos(pos) v.setType(typ) return fn.emit(v) } v := &MakeSlice{ Len: n, Cap: m, } v.setPos(pos) v.setType(typ) return fn.emit(v)
case *types.Map: var res Value if len(args) == 2 { res = b.expr(fn, args[1]) } v := &MakeMap{Reserve: res} v.setPos(pos) v.setType(typ) return fn.emit(v)
case *types.Chan: var sz Value = vZero if len(args) == 2 { sz = b.expr(fn, args[1]) } v := &MakeChan{Size: sz} v.setPos(pos) v.setType(typ) return fn.emit(v) }
case "new": alloc := emitNew(fn, deref(typ), pos) alloc.Comment = "new" return alloc
case "len", "cap": // Special case: len or cap of an array or *array is
// based on the type, not the value which may be nil.
// We must still evaluate the value, though. (If it
// was side-effect free, the whole call would have
// been constant-folded.)
t := deref(fn.Pkg.typeOf(args[0])).Underlying() if at, ok := t.(*types.Array); ok { b.expr(fn, args[0]) // for effects only
return intConst(at.Len()) } // Otherwise treat as normal.
case "panic": fn.emit(&Panic{ X: emitConv(fn, b.expr(fn, args[0]), tEface), pos: pos, }) fn.currentBlock = fn.newBasicBlock("unreachable") return vTrue // any non-nil Value will do
} return nil // treat all others as a regular function call
}
// addr lowers a single-result addressable expression e to SSA form,
// emitting code to fn and returning the location (an lvalue) defined
// by the expression.
//
// If escaping is true, addr marks the base variable of the
// addressable expression e as being a potentially escaping pointer
// value. For example, in this code:
//
// a := A{
// b: [1]B{B{c: 1}}
// }
// return &a.b[0].c
//
// the application of & causes a.b[0].c to have its address taken,
// which means that ultimately the local variable a must be
// heap-allocated. This is a simple but very conservative escape
// analysis.
//
// Operations forming potentially escaping pointers include:
// - &x, including when implicit in method call or composite literals.
// - a[:] iff a is an array (not *array)
// - references to variables in lexically enclosing functions.
//
func (b *builder) addr(fn *Function, e ast.Expr, escaping bool) lvalue { switch e := e.(type) { case *ast.Ident: if isBlankIdent(e) { return blank{} } obj := fn.Pkg.objectOf(e) v := fn.Prog.packageLevelValue(obj) // var (address)
if v == nil { v = fn.lookup(obj, escaping) } return &address{addr: v, pos: e.Pos(), expr: e}
case *ast.CompositeLit: t := deref(fn.Pkg.typeOf(e)) var v *Alloc if escaping { v = emitNew(fn, t, e.Lbrace) } else { v = fn.addLocal(t, e.Lbrace) } v.Comment = "complit" var sb storebuf b.compLit(fn, v, e, true, &sb) sb.emit(fn) return &address{addr: v, pos: e.Lbrace, expr: e}
case *ast.ParenExpr: return b.addr(fn, e.X, escaping)
case *ast.SelectorExpr: sel, ok := fn.Pkg.info.Selections[e] if !ok { // qualified identifier
return b.addr(fn, e.Sel, escaping) } if sel.Kind() != types.FieldVal { panic(sel) } wantAddr := true v := b.receiver(fn, e.X, wantAddr, escaping, sel) last := len(sel.Index()) - 1 return &address{ addr: emitFieldSelection(fn, v, sel.Index()[last], true, e.Sel), pos: e.Sel.Pos(), expr: e.Sel, }
case *ast.IndexExpr: var x Value var et types.Type switch t := fn.Pkg.typeOf(e.X).Underlying().(type) { case *types.Array: x = b.addr(fn, e.X, escaping).address(fn) et = types.NewPointer(t.Elem()) case *types.Pointer: // *array
x = b.expr(fn, e.X) et = types.NewPointer(t.Elem().Underlying().(*types.Array).Elem()) case *types.Slice: x = b.expr(fn, e.X) et = types.NewPointer(t.Elem()) case *types.Map: return &element{ m: b.expr(fn, e.X), k: emitConv(fn, b.expr(fn, e.Index), t.Key()), t: t.Elem(), pos: e.Lbrack, } default: panic("unexpected container type in IndexExpr: " + t.String()) } v := &IndexAddr{ X: x, Index: emitConv(fn, b.expr(fn, e.Index), tInt), } v.setPos(e.Lbrack) v.setType(et) return &address{addr: fn.emit(v), pos: e.Lbrack, expr: e}
case *ast.StarExpr: return &address{addr: b.expr(fn, e.X), pos: e.Star, expr: e} }
panic(fmt.Sprintf("unexpected address expression: %T", e)) }
type store struct { lhs lvalue rhs Value }
type storebuf struct{ stores []store }
func (sb *storebuf) store(lhs lvalue, rhs Value) { sb.stores = append(sb.stores, store{lhs, rhs}) }
func (sb *storebuf) emit(fn *Function) { for _, s := range sb.stores { s.lhs.store(fn, s.rhs) } }
// assign emits to fn code to initialize the lvalue loc with the value
// of expression e. If isZero is true, assign assumes that loc holds
// the zero value for its type.
//
// This is equivalent to loc.store(fn, b.expr(fn, e)), but may generate
// better code in some cases, e.g., for composite literals in an
// addressable location.
//
// If sb is not nil, assign generates code to evaluate expression e, but
// not to update loc. Instead, the necessary stores are appended to the
// storebuf sb so that they can be executed later. This allows correct
// in-place update of existing variables when the RHS is a composite
// literal that may reference parts of the LHS.
//
func (b *builder) assign(fn *Function, loc lvalue, e ast.Expr, isZero bool, sb *storebuf) { // Can we initialize it in place?
if e, ok := unparen(e).(*ast.CompositeLit); ok { // A CompositeLit never evaluates to a pointer,
// so if the type of the location is a pointer,
// an &-operation is implied.
if _, ok := loc.(blank); !ok { // avoid calling blank.typ()
if isPointer(loc.typ()) { ptr := b.addr(fn, e, true).address(fn) // copy address
if sb != nil { sb.store(loc, ptr) } else { loc.store(fn, ptr) } return } }
if _, ok := loc.(*address); ok { if isInterface(loc.typ()) { // e.g. var x interface{} = T{...}
// Can't in-place initialize an interface value.
// Fall back to copying.
} else { // x = T{...} or x := T{...}
addr := loc.address(fn) if sb != nil { b.compLit(fn, addr, e, isZero, sb) } else { var sb storebuf b.compLit(fn, addr, e, isZero, &sb) sb.emit(fn) }
// Subtle: emit debug ref for aggregate types only;
// slice and map are handled by store ops in compLit.
switch loc.typ().Underlying().(type) { case *types.Struct, *types.Array: emitDebugRef(fn, e, addr, true) }
return } } }
// simple case: just copy
rhs := b.expr(fn, e) if sb != nil { sb.store(loc, rhs) } else { loc.store(fn, rhs) } }
// expr lowers a single-result expression e to SSA form, emitting code
// to fn and returning the Value defined by the expression.
//
func (b *builder) expr(fn *Function, e ast.Expr) Value { e = unparen(e)
tv := fn.Pkg.info.Types[e]
// Is expression a constant?
if tv.Value != nil { return NewConst(tv.Value, tv.Type) }
var v Value if tv.Addressable() { // Prefer pointer arithmetic ({Index,Field}Addr) followed
// by Load over subelement extraction (e.g. Index, Field),
// to avoid large copies.
v = b.addr(fn, e, false).load(fn) } else { v = b.expr0(fn, e, tv) } if fn.debugInfo() { emitDebugRef(fn, e, v, false) } return v }
func (b *builder) expr0(fn *Function, e ast.Expr, tv types.TypeAndValue) Value { switch e := e.(type) { case *ast.BasicLit: panic("non-constant BasicLit") // unreachable
case *ast.FuncLit: fn2 := &Function{ name: fmt.Sprintf("%s$%d", fn.Name(), 1+len(fn.AnonFuncs)), Signature: fn.Pkg.typeOf(e.Type).Underlying().(*types.Signature), pos: e.Type.Func, parent: fn, Pkg: fn.Pkg, Prog: fn.Prog, syntax: e, } fn.AnonFuncs = append(fn.AnonFuncs, fn2) b.buildFunction(fn2) if fn2.FreeVars == nil { return fn2 } v := &MakeClosure{Fn: fn2} v.setType(tv.Type) for _, fv := range fn2.FreeVars { v.Bindings = append(v.Bindings, fv.outer) fv.outer = nil } return fn.emit(v)
case *ast.TypeAssertExpr: // single-result form only
return emitTypeAssert(fn, b.expr(fn, e.X), tv.Type, e.Lparen)
case *ast.CallExpr: if fn.Pkg.info.Types[e.Fun].IsType() { // Explicit type conversion, e.g. string(x) or big.Int(x)
x := b.expr(fn, e.Args[0]) y := emitConv(fn, x, tv.Type) if y != x { switch y := y.(type) { case *Convert: y.pos = e.Lparen case *ChangeType: y.pos = e.Lparen case *MakeInterface: y.pos = e.Lparen } } return y } // Call to "intrinsic" built-ins, e.g. new, make, panic.
if id, ok := unparen(e.Fun).(*ast.Ident); ok { if obj, ok := fn.Pkg.info.Uses[id].(*types.Builtin); ok { if v := b.builtin(fn, obj, e.Args, tv.Type, e.Lparen); v != nil { return v } } } // Regular function call.
var v Call b.setCall(fn, e, &v.Call) v.setType(tv.Type) return fn.emit(&v)
case *ast.UnaryExpr: switch e.Op { case token.AND: // &X --- potentially escaping.
addr := b.addr(fn, e.X, true) if _, ok := unparen(e.X).(*ast.StarExpr); ok { // &*p must panic if p is nil (http://golang.org/s/go12nil).
// For simplicity, we'll just (suboptimally) rely
// on the side effects of a load.
// TODO(adonovan): emit dedicated nilcheck.
addr.load(fn) } return addr.address(fn) case token.ADD: return b.expr(fn, e.X) case token.NOT, token.ARROW, token.SUB, token.XOR: // ! <- - ^
v := &UnOp{ Op: e.Op, X: b.expr(fn, e.X), } v.setPos(e.OpPos) v.setType(tv.Type) return fn.emit(v) default: panic(e.Op) }
case *ast.BinaryExpr: switch e.Op { case token.LAND, token.LOR: return b.logicalBinop(fn, e) case token.SHL, token.SHR: fallthrough case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT: return emitArith(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), tv.Type, e.OpPos)
case token.EQL, token.NEQ, token.GTR, token.LSS, token.LEQ, token.GEQ: cmp := emitCompare(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), e.OpPos) // The type of x==y may be UntypedBool.
return emitConv(fn, cmp, DefaultType(tv.Type)) default: panic("illegal op in BinaryExpr: " + e.Op.String()) }
case *ast.SliceExpr: var low, high, max Value var x Value switch fn.Pkg.typeOf(e.X).Underlying().(type) { case *types.Array: // Potentially escaping.
x = b.addr(fn, e.X, true).address(fn) case *types.Basic, *types.Slice, *types.Pointer: // *array
x = b.expr(fn, e.X) default: panic("unreachable") } if e.High != nil { high = b.expr(fn, e.High) } if e.Low != nil { low = b.expr(fn, e.Low) } if e.Slice3 { max = b.expr(fn, e.Max) } v := &Slice{ X: x, Low: low, High: high, Max: max, } v.setPos(e.Lbrack) v.setType(tv.Type) return fn.emit(v)
case *ast.Ident: obj := fn.Pkg.info.Uses[e] // Universal built-in or nil?
switch obj := obj.(type) { case *types.Builtin: return &Builtin{name: obj.Name(), sig: tv.Type.(*types.Signature)} case *types.Nil: return nilConst(tv.Type) } // Package-level func or var?
if v := fn.Prog.packageLevelValue(obj); v != nil { if _, ok := obj.(*types.Var); ok { return emitLoad(fn, v) // var (address)
} return v // (func)
} // Local var.
return emitLoad(fn, fn.lookup(obj, false)) // var (address)
case *ast.SelectorExpr: sel, ok := fn.Pkg.info.Selections[e] if !ok { // qualified identifier
return b.expr(fn, e.Sel) } switch sel.Kind() { case types.MethodExpr: // (*T).f or T.f, the method f from the method-set of type T.
// The result is a "thunk".
return emitConv(fn, makeThunk(fn.Prog, sel), tv.Type)
case types.MethodVal: // e.f where e is an expression and f is a method.
// The result is a "bound".
obj := sel.Obj().(*types.Func) rt := recvType(obj) wantAddr := isPointer(rt) escaping := true v := b.receiver(fn, e.X, wantAddr, escaping, sel) if isInterface(rt) { // If v has interface type I,
// we must emit a check that v is non-nil.
// We use: typeassert v.(I).
emitTypeAssert(fn, v, rt, token.NoPos) } c := &MakeClosure{ Fn: makeBound(fn.Prog, obj), Bindings: []Value{v}, } c.setPos(e.Sel.Pos()) c.setType(tv.Type) return fn.emit(c)
case types.FieldVal: indices := sel.Index() last := len(indices) - 1 v := b.expr(fn, e.X) v = emitImplicitSelections(fn, v, indices[:last]) v = emitFieldSelection(fn, v, indices[last], false, e.Sel) return v }
panic("unexpected expression-relative selector")
case *ast.IndexExpr: switch t := fn.Pkg.typeOf(e.X).Underlying().(type) { case *types.Array: // Non-addressable array (in a register).
v := &Index{ X: b.expr(fn, e.X), Index: emitConv(fn, b.expr(fn, e.Index), tInt), } v.setPos(e.Lbrack) v.setType(t.Elem()) return fn.emit(v)
case *types.Map: // Maps are not addressable.
mapt := fn.Pkg.typeOf(e.X).Underlying().(*types.Map) v := &Lookup{ X: b.expr(fn, e.X), Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()), } v.setPos(e.Lbrack) v.setType(mapt.Elem()) return fn.emit(v)
case *types.Basic: // => string
// Strings are not addressable.
v := &Lookup{ X: b.expr(fn, e.X), Index: b.expr(fn, e.Index), } v.setPos(e.Lbrack) v.setType(tByte) return fn.emit(v)
case *types.Slice, *types.Pointer: // *array
// Addressable slice/array; use IndexAddr and Load.
return b.addr(fn, e, false).load(fn)
default: panic("unexpected container type in IndexExpr: " + t.String()) }
case *ast.CompositeLit, *ast.StarExpr: // Addressable types (lvalues)
return b.addr(fn, e, false).load(fn) }
panic(fmt.Sprintf("unexpected expr: %T", e)) }
// stmtList emits to fn code for all statements in list.
func (b *builder) stmtList(fn *Function, list []ast.Stmt) { for _, s := range list { b.stmt(fn, s) } }
// receiver emits to fn code for expression e in the "receiver"
// position of selection e.f (where f may be a field or a method) and
// returns the effective receiver after applying the implicit field
// selections of sel.
//
// wantAddr requests that the result is an an address. If
// !sel.Indirect(), this may require that e be built in addr() mode; it
// must thus be addressable.
//
// escaping is defined as per builder.addr().
//
func (b *builder) receiver(fn *Function, e ast.Expr, wantAddr, escaping bool, sel *types.Selection) Value { var v Value if wantAddr && !sel.Indirect() && !isPointer(fn.Pkg.typeOf(e)) { v = b.addr(fn, e, escaping).address(fn) } else { v = b.expr(fn, e) }
last := len(sel.Index()) - 1 v = emitImplicitSelections(fn, v, sel.Index()[:last]) if !wantAddr && isPointer(v.Type()) { v = emitLoad(fn, v) } return v }
// setCallFunc populates the function parts of a CallCommon structure
// (Func, Method, Recv, Args[0]) based on the kind of invocation
// occurring in e.
//
func (b *builder) setCallFunc(fn *Function, e *ast.CallExpr, c *CallCommon) { c.pos = e.Lparen
// Is this a method call?
if selector, ok := unparen(e.Fun).(*ast.SelectorExpr); ok { sel, ok := fn.Pkg.info.Selections[selector] if ok && sel.Kind() == types.MethodVal { obj := sel.Obj().(*types.Func) recv := recvType(obj) wantAddr := isPointer(recv) escaping := true v := b.receiver(fn, selector.X, wantAddr, escaping, sel) if isInterface(recv) { // Invoke-mode call.
c.Value = v c.Method = obj } else { // "Call"-mode call.
c.Value = fn.Prog.declaredFunc(obj) c.Args = append(c.Args, v) } return }
// sel.Kind()==MethodExpr indicates T.f() or (*T).f():
// a statically dispatched call to the method f in the
// method-set of T or *T. T may be an interface.
//
// e.Fun would evaluate to a concrete method, interface
// wrapper function, or promotion wrapper.
//
// For now, we evaluate it in the usual way.
//
// TODO(adonovan): opt: inline expr() here, to make the
// call static and to avoid generation of wrappers.
// It's somewhat tricky as it may consume the first
// actual parameter if the call is "invoke" mode.
//
// Examples:
// type T struct{}; func (T) f() {} // "call" mode
// type T interface { f() } // "invoke" mode
//
// type S struct{ T }
//
// var s S
// S.f(s)
// (*S).f(&s)
//
// Suggested approach:
// - consume the first actual parameter expression
// and build it with b.expr().
// - apply implicit field selections.
// - use MethodVal logic to populate fields of c.
}
// Evaluate the function operand in the usual way.
c.Value = b.expr(fn, e.Fun) }
// emitCallArgs emits to f code for the actual parameters of call e to
// a (possibly built-in) function of effective type sig.
// The argument values are appended to args, which is then returned.
//
func (b *builder) emitCallArgs(fn *Function, sig *types.Signature, e *ast.CallExpr, args []Value) []Value { // f(x, y, z...): pass slice z straight through.
if e.Ellipsis != 0 { for i, arg := range e.Args { v := emitConv(fn, b.expr(fn, arg), sig.Params().At(i).Type()) args = append(args, v) } return args }
offset := len(args) // 1 if call has receiver, 0 otherwise
// Evaluate actual parameter expressions.
//
// If this is a chained call of the form f(g()) where g has
// multiple return values (MRV), they are flattened out into
// args; a suffix of them may end up in a varargs slice.
for _, arg := range e.Args { v := b.expr(fn, arg) if ttuple, ok := v.Type().(*types.Tuple); ok { // MRV chain
for i, n := 0, ttuple.Len(); i < n; i++ { args = append(args, emitExtract(fn, v, i)) } } else { args = append(args, v) } }
// Actual->formal assignability conversions for normal parameters.
np := sig.Params().Len() // number of normal parameters
if sig.Variadic() { np-- } for i := 0; i < np; i++ { args[offset+i] = emitConv(fn, args[offset+i], sig.Params().At(i).Type()) }
// Actual->formal assignability conversions for variadic parameter,
// and construction of slice.
if sig.Variadic() { varargs := args[offset+np:] st := sig.Params().At(np).Type().(*types.Slice) vt := st.Elem() if len(varargs) == 0 { args = append(args, nilConst(st)) } else { // Replace a suffix of args with a slice containing it.
at := types.NewArray(vt, int64(len(varargs))) a := emitNew(fn, at, token.NoPos) a.setPos(e.Rparen) a.Comment = "varargs" for i, arg := range varargs { iaddr := &IndexAddr{ X: a, Index: intConst(int64(i)), } iaddr.setType(types.NewPointer(vt)) fn.emit(iaddr) emitStore(fn, iaddr, arg, arg.Pos()) } s := &Slice{X: a} s.setType(st) args[offset+np] = fn.emit(s) args = args[:offset+np+1] } } return args }
// setCall emits to fn code to evaluate all the parameters of a function
// call e, and populates *c with those values.
//
func (b *builder) setCall(fn *Function, e *ast.CallExpr, c *CallCommon) { // First deal with the f(...) part and optional receiver.
b.setCallFunc(fn, e, c)
// Then append the other actual parameters.
sig, _ := fn.Pkg.typeOf(e.Fun).Underlying().(*types.Signature) if sig == nil { panic(fmt.Sprintf("no signature for call of %s", e.Fun)) } c.Args = b.emitCallArgs(fn, sig, e, c.Args) }
// assignOp emits to fn code to perform loc += incr or loc -= incr.
func (b *builder) assignOp(fn *Function, loc lvalue, incr Value, op token.Token) { oldv := loc.load(fn) loc.store(fn, emitArith(fn, op, oldv, emitConv(fn, incr, oldv.Type()), loc.typ(), token.NoPos)) }
// localValueSpec emits to fn code to define all of the vars in the
// function-local ValueSpec, spec.
//
func (b *builder) localValueSpec(fn *Function, spec *ast.ValueSpec) { switch { case len(spec.Values) == len(spec.Names): // e.g. var x, y = 0, 1
// 1:1 assignment
for i, id := range spec.Names { if !isBlankIdent(id) { fn.addLocalForIdent(id) } lval := b.addr(fn, id, false) // non-escaping
b.assign(fn, lval, spec.Values[i], true, nil) }
case len(spec.Values) == 0: // e.g. var x, y int
// Locals are implicitly zero-initialized.
for _, id := range spec.Names { if !isBlankIdent(id) { lhs := fn.addLocalForIdent(id) if fn.debugInfo() { emitDebugRef(fn, id, lhs, true) } } }
default: // e.g. var x, y = pos()
tuple := b.exprN(fn, spec.Values[0]) for i, id := range spec.Names { if !isBlankIdent(id) { fn.addLocalForIdent(id) lhs := b.addr(fn, id, false) // non-escaping
lhs.store(fn, emitExtract(fn, tuple, i)) } } } }
// assignStmt emits code to fn for a parallel assignment of rhss to lhss.
// isDef is true if this is a short variable declaration (:=).
//
// Note the similarity with localValueSpec.
//
func (b *builder) assignStmt(fn *Function, lhss, rhss []ast.Expr, isDef bool) { // Side effects of all LHSs and RHSs must occur in left-to-right order.
lvals := make([]lvalue, len(lhss)) isZero := make([]bool, len(lhss)) for i, lhs := range lhss { var lval lvalue = blank{} if !isBlankIdent(lhs) { if isDef { if obj := fn.Pkg.info.Defs[lhs.(*ast.Ident)]; obj != nil { fn.addNamedLocal(obj) isZero[i] = true } } lval = b.addr(fn, lhs, false) // non-escaping
} lvals[i] = lval } if len(lhss) == len(rhss) { // Simple assignment: x = f() (!isDef)
// Parallel assignment: x, y = f(), g() (!isDef)
// or short var decl: x, y := f(), g() (isDef)
//
// In all cases, the RHSs may refer to the LHSs,
// so we need a storebuf.
var sb storebuf for i := range rhss { b.assign(fn, lvals[i], rhss[i], isZero[i], &sb) } sb.emit(fn) } else { // e.g. x, y = pos()
tuple := b.exprN(fn, rhss[0]) emitDebugRef(fn, rhss[0], tuple, false) for i, lval := range lvals { lval.store(fn, emitExtract(fn, tuple, i)) } } }
// arrayLen returns the length of the array whose composite literal elements are elts.
func (b *builder) arrayLen(fn *Function, elts []ast.Expr) int64 { var max int64 = -1 var i int64 = -1 for _, e := range elts { if kv, ok := e.(*ast.KeyValueExpr); ok { i = b.expr(fn, kv.Key).(*Const).Int64() } else { i++ } if i > max { max = i } } return max + 1 }
// compLit emits to fn code to initialize a composite literal e at
// address addr with type typ.
//
// Nested composite literals are recursively initialized in place
// where possible. If isZero is true, compLit assumes that addr
// holds the zero value for typ.
//
// Because the elements of a composite literal may refer to the
// variables being updated, as in the second line below,
// x := T{a: 1}
// x = T{a: x.a}
// all the reads must occur before all the writes. Thus all stores to
// loc are emitted to the storebuf sb for later execution.
//
// A CompositeLit may have pointer type only in the recursive (nested)
// case when the type name is implicit. e.g. in []*T{{}}, the inner
// literal has type *T behaves like &T{}.
// In that case, addr must hold a T, not a *T.
//
func (b *builder) compLit(fn *Function, addr Value, e *ast.CompositeLit, isZero bool, sb *storebuf) { typ := deref(fn.Pkg.typeOf(e)) switch t := typ.Underlying().(type) { case *types.Struct: if !isZero && len(e.Elts) != t.NumFields() { // memclear
sb.store(&address{addr, e.Lbrace, nil}, zeroValue(fn, deref(addr.Type()))) isZero = true } for i, e := range e.Elts { fieldIndex := i pos := e.Pos() if kv, ok := e.(*ast.KeyValueExpr); ok { fname := kv.Key.(*ast.Ident).Name for i, n := 0, t.NumFields(); i < n; i++ { sf := t.Field(i) if sf.Name() == fname { fieldIndex = i pos = kv.Colon e = kv.Value break } } } sf := t.Field(fieldIndex) faddr := &FieldAddr{ X: addr, Field: fieldIndex, } faddr.setType(types.NewPointer(sf.Type())) fn.emit(faddr) b.assign(fn, &address{addr: faddr, pos: pos, expr: e}, e, isZero, sb) }
case *types.Array, *types.Slice: var at *types.Array var array Value switch t := t.(type) { case *types.Slice: at = types.NewArray(t.Elem(), b.arrayLen(fn, e.Elts)) alloc := emitNew(fn, at, e.Lbrace) alloc.Comment = "slicelit" array = alloc case *types.Array: at = t array = addr
if !isZero && int64(len(e.Elts)) != at.Len() { // memclear
sb.store(&address{array, e.Lbrace, nil}, zeroValue(fn, deref(array.Type()))) } }
var idx *Const for _, e := range e.Elts { pos := e.Pos() if kv, ok := e.(*ast.KeyValueExpr); ok { idx = b.expr(fn, kv.Key).(*Const) pos = kv.Colon e = kv.Value } else { var idxval int64 if idx != nil { idxval = idx.Int64() + 1 } idx = intConst(idxval) } iaddr := &IndexAddr{ X: array, Index: idx, } iaddr.setType(types.NewPointer(at.Elem())) fn.emit(iaddr) if t != at { // slice
// backing array is unaliased => storebuf not needed.
b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, nil) } else { b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, sb) } }
if t != at { // slice
s := &Slice{X: array} s.setPos(e.Lbrace) s.setType(typ) sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, fn.emit(s)) }
case *types.Map: m := &MakeMap{Reserve: intConst(int64(len(e.Elts)))} m.setPos(e.Lbrace) m.setType(typ) fn.emit(m) for _, e := range e.Elts { e := e.(*ast.KeyValueExpr)
// If a key expression in a map literal is itself a
// composite literal, the type may be omitted.
// For example:
// map[*struct{}]bool{{}: true}
// An &-operation may be implied:
// map[*struct{}]bool{&struct{}{}: true}
var key Value if _, ok := unparen(e.Key).(*ast.CompositeLit); ok && isPointer(t.Key()) { // A CompositeLit never evaluates to a pointer,
// so if the type of the location is a pointer,
// an &-operation is implied.
key = b.addr(fn, e.Key, true).address(fn) } else { key = b.expr(fn, e.Key) }
loc := element{ m: m, k: emitConv(fn, key, t.Key()), t: t.Elem(), pos: e.Colon, }
// We call assign() only because it takes care
// of any &-operation required in the recursive
// case, e.g.,
// map[int]*struct{}{0: {}} implies &struct{}{}.
// In-place update is of course impossible,
// and no storebuf is needed.
b.assign(fn, &loc, e.Value, true, nil) } sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, m)
default: panic("unexpected CompositeLit type: " + t.String()) } }
// switchStmt emits to fn code for the switch statement s, optionally
// labelled by label.
//
func (b *builder) switchStmt(fn *Function, s *ast.SwitchStmt, label *lblock) { // We treat SwitchStmt like a sequential if-else chain.
// Multiway dispatch can be recovered later by ssautil.Switches()
// to those cases that are free of side effects.
if s.Init != nil { b.stmt(fn, s.Init) } var tag Value = vTrue if s.Tag != nil { tag = b.expr(fn, s.Tag) } done := fn.newBasicBlock("switch.done") if label != nil { label._break = done } // We pull the default case (if present) down to the end.
// But each fallthrough label must point to the next
// body block in source order, so we preallocate a
// body block (fallthru) for the next case.
// Unfortunately this makes for a confusing block order.
var dfltBody *[]ast.Stmt var dfltFallthrough *BasicBlock var fallthru, dfltBlock *BasicBlock ncases := len(s.Body.List) for i, clause := range s.Body.List { body := fallthru if body == nil { body = fn.newBasicBlock("switch.body") // first case only
}
// Preallocate body block for the next case.
fallthru = done if i+1 < ncases { fallthru = fn.newBasicBlock("switch.body") }
cc := clause.(*ast.CaseClause) if cc.List == nil { // Default case.
dfltBody = &cc.Body dfltFallthrough = fallthru dfltBlock = body continue }
var nextCond *BasicBlock for _, cond := range cc.List { nextCond = fn.newBasicBlock("switch.next") // TODO(adonovan): opt: when tag==vTrue, we'd
// get better code if we use b.cond(cond)
// instead of BinOp(EQL, tag, b.expr(cond))
// followed by If. Don't forget conversions
// though.
cond := emitCompare(fn, token.EQL, tag, b.expr(fn, cond), token.NoPos) emitIf(fn, cond, body, nextCond) fn.currentBlock = nextCond } fn.currentBlock = body fn.targets = &targets{ tail: fn.targets, _break: done, _fallthrough: fallthru, } b.stmtList(fn, cc.Body) fn.targets = fn.targets.tail emitJump(fn, done) fn.currentBlock = nextCond } if dfltBlock != nil { emitJump(fn, dfltBlock) fn.currentBlock = dfltBlock fn.targets = &targets{ tail: fn.targets, _break: done, _fallthrough: dfltFallthrough, } b.stmtList(fn, *dfltBody) fn.targets = fn.targets.tail } emitJump(fn, done) fn.currentBlock = done }
// typeSwitchStmt emits to fn code for the type switch statement s, optionally
// labelled by label.
//
func (b *builder) typeSwitchStmt(fn *Function, s *ast.TypeSwitchStmt, label *lblock) { // We treat TypeSwitchStmt like a sequential if-else chain.
// Multiway dispatch can be recovered later by ssautil.Switches().
// Typeswitch lowering:
//
// var x X
// switch y := x.(type) {
// case T1, T2: S1 // >1 (y := x)
// case nil: SN // nil (y := x)
// default: SD // 0 types (y := x)
// case T3: S3 // 1 type (y := x.(T3))
// }
//
// ...s.Init...
// x := eval x
// .caseT1:
// t1, ok1 := typeswitch,ok x <T1>
// if ok1 then goto S1 else goto .caseT2
// .caseT2:
// t2, ok2 := typeswitch,ok x <T2>
// if ok2 then goto S1 else goto .caseNil
// .S1:
// y := x
// ...S1...
// goto done
// .caseNil:
// if t2, ok2 := typeswitch,ok x <T2>
// if x == nil then goto SN else goto .caseT3
// .SN:
// y := x
// ...SN...
// goto done
// .caseT3:
// t3, ok3 := typeswitch,ok x <T3>
// if ok3 then goto S3 else goto default
// .S3:
// y := t3
// ...S3...
// goto done
// .default:
// y := x
// ...SD...
// goto done
// .done:
if s.Init != nil { b.stmt(fn, s.Init) }
var x Value switch ass := s.Assign.(type) { case *ast.ExprStmt: // x.(type)
x = b.expr(fn, unparen(ass.X).(*ast.TypeAssertExpr).X) case *ast.AssignStmt: // y := x.(type)
x = b.expr(fn, unparen(ass.Rhs[0]).(*ast.TypeAssertExpr).X) }
done := fn.newBasicBlock("typeswitch.done") if label != nil { label._break = done } var default_ *ast.CaseClause for _, clause := range s.Body.List { cc := clause.(*ast.CaseClause) if cc.List == nil { default_ = cc continue } body := fn.newBasicBlock("typeswitch.body") var next *BasicBlock var casetype types.Type var ti Value // ti, ok := typeassert,ok x <Ti>
for _, cond := range cc.List { next = fn.newBasicBlock("typeswitch.next") casetype = fn.Pkg.typeOf(cond) var condv Value if casetype == tUntypedNil { condv = emitCompare(fn, token.EQL, x, nilConst(x.Type()), token.NoPos) ti = x } else { yok := emitTypeTest(fn, x, casetype, cc.Case) ti = emitExtract(fn, yok, 0) condv = emitExtract(fn, yok, 1) } emitIf(fn, condv, body, next) fn.currentBlock = next } if len(cc.List) != 1 { ti = x } fn.currentBlock = body b.typeCaseBody(fn, cc, ti, done) fn.currentBlock = next } if default_ != nil { b.typeCaseBody(fn, default_, x, done) } else { emitJump(fn, done) } fn.currentBlock = done }
func (b *builder) typeCaseBody(fn *Function, cc *ast.CaseClause, x Value, done *BasicBlock) { if obj := fn.Pkg.info.Implicits[cc]; obj != nil { // In a switch y := x.(type), each case clause
// implicitly declares a distinct object y.
// In a single-type case, y has that type.
// In multi-type cases, 'case nil' and default,
// y has the same type as the interface operand.
emitStore(fn, fn.addNamedLocal(obj), x, obj.Pos()) } fn.targets = &targets{ tail: fn.targets, _break: done, } b.stmtList(fn, cc.Body) fn.targets = fn.targets.tail emitJump(fn, done) }
// selectStmt emits to fn code for the select statement s, optionally
// labelled by label.
//
func (b *builder) selectStmt(fn *Function, s *ast.SelectStmt, label *lblock) { // A blocking select of a single case degenerates to a
// simple send or receive.
// TODO(adonovan): opt: is this optimization worth its weight?
if len(s.Body.List) == 1 { clause := s.Body.List[0].(*ast.CommClause) if clause.Comm != nil { b.stmt(fn, clause.Comm) done := fn.newBasicBlock("select.done") if label != nil { label._break = done } fn.targets = &targets{ tail: fn.targets, _break: done, } b.stmtList(fn, clause.Body) fn.targets = fn.targets.tail emitJump(fn, done) fn.currentBlock = done return } }
// First evaluate all channels in all cases, and find
// the directions of each state.
var states []*SelectState blocking := true debugInfo := fn.debugInfo() for _, clause := range s.Body.List { var st *SelectState switch comm := clause.(*ast.CommClause).Comm.(type) { case nil: // default case
blocking = false continue
case *ast.SendStmt: // ch<- i
ch := b.expr(fn, comm.Chan) st = &SelectState{ Dir: types.SendOnly, Chan: ch, Send: emitConv(fn, b.expr(fn, comm.Value), ch.Type().Underlying().(*types.Chan).Elem()), Pos: comm.Arrow, } if debugInfo { st.DebugNode = comm }
case *ast.AssignStmt: // x := <-ch
recv := unparen(comm.Rhs[0]).(*ast.UnaryExpr) st = &SelectState{ Dir: types.RecvOnly, Chan: b.expr(fn, recv.X), Pos: recv.OpPos, } if debugInfo { st.DebugNode = recv }
case *ast.ExprStmt: // <-ch
recv := unparen(comm.X).(*ast.UnaryExpr) st = &SelectState{ Dir: types.RecvOnly, Chan: b.expr(fn, recv.X), Pos: recv.OpPos, } if debugInfo { st.DebugNode = recv } } states = append(states, st) }
// We dispatch on the (fair) result of Select using a
// sequential if-else chain, in effect:
//
// idx, recvOk, r0...r_n-1 := select(...)
// if idx == 0 { // receive on channel 0 (first receive => r0)
// x, ok := r0, recvOk
// ...state0...
// } else if v == 1 { // send on channel 1
// ...state1...
// } else {
// ...default...
// }
sel := &Select{ States: states, Blocking: blocking, } sel.setPos(s.Select) var vars []*types.Var vars = append(vars, varIndex, varOk) for _, st := range states { if st.Dir == types.RecvOnly { tElem := st.Chan.Type().Underlying().(*types.Chan).Elem() vars = append(vars, anonVar(tElem)) } } sel.setType(types.NewTuple(vars...))
fn.emit(sel) idx := emitExtract(fn, sel, 0)
done := fn.newBasicBlock("select.done") if label != nil { label._break = done }
var defaultBody *[]ast.Stmt state := 0 r := 2 // index in 'sel' tuple of value; increments if st.Dir==RECV
for _, cc := range s.Body.List { clause := cc.(*ast.CommClause) if clause.Comm == nil { defaultBody = &clause.Body continue } body := fn.newBasicBlock("select.body") next := fn.newBasicBlock("select.next") emitIf(fn, emitCompare(fn, token.EQL, idx, intConst(int64(state)), token.NoPos), body, next) fn.currentBlock = body fn.targets = &targets{ tail: fn.targets, _break: done, } switch comm := clause.Comm.(type) { case *ast.ExprStmt: // <-ch
if debugInfo { v := emitExtract(fn, sel, r) emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false) } r++
case *ast.AssignStmt: // x := <-states[state].Chan
if comm.Tok == token.DEFINE { fn.addLocalForIdent(comm.Lhs[0].(*ast.Ident)) } x := b.addr(fn, comm.Lhs[0], false) // non-escaping
v := emitExtract(fn, sel, r) if debugInfo { emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false) } x.store(fn, v)
if len(comm.Lhs) == 2 { // x, ok := ...
if comm.Tok == token.DEFINE { fn.addLocalForIdent(comm.Lhs[1].(*ast.Ident)) } ok := b.addr(fn, comm.Lhs[1], false) // non-escaping
ok.store(fn, emitExtract(fn, sel, 1)) } r++ } b.stmtList(fn, clause.Body) fn.targets = fn.targets.tail emitJump(fn, done) fn.currentBlock = next state++ } if defaultBody != nil { fn.targets = &targets{ tail: fn.targets, _break: done, } b.stmtList(fn, *defaultBody) fn.targets = fn.targets.tail } else { // A blocking select must match some case.
// (This should really be a runtime.errorString, not a string.)
fn.emit(&Panic{ X: emitConv(fn, stringConst("blocking select matched no case"), tEface), }) fn.currentBlock = fn.newBasicBlock("unreachable") } emitJump(fn, done) fn.currentBlock = done }
// forStmt emits to fn code for the for statement s, optionally
// labelled by label.
//
func (b *builder) forStmt(fn *Function, s *ast.ForStmt, label *lblock) { // ...init...
// jump loop
// loop:
// if cond goto body else done
// body:
// ...body...
// jump post
// post: (target of continue)
// ...post...
// jump loop
// done: (target of break)
if s.Init != nil { b.stmt(fn, s.Init) } body := fn.newBasicBlock("for.body") done := fn.newBasicBlock("for.done") // target of 'break'
loop := body // target of back-edge
if s.Cond != nil { loop = fn.newBasicBlock("for.loop") } cont := loop // target of 'continue'
if s.Post != nil { cont = fn.newBasicBlock("for.post") } if label != nil { label._break = done label._continue = cont } emitJump(fn, loop) fn.currentBlock = loop if loop != body { b.cond(fn, s.Cond, body, done) fn.currentBlock = body } fn.targets = &targets{ tail: fn.targets, _break: done, _continue: cont, } b.stmt(fn, s.Body) fn.targets = fn.targets.tail emitJump(fn, cont)
if s.Post != nil { fn.currentBlock = cont b.stmt(fn, s.Post) emitJump(fn, loop) // back-edge
} fn.currentBlock = done }
// rangeIndexed emits to fn the header for an integer-indexed loop
// over array, *array or slice value x.
// The v result is defined only if tv is non-nil.
// forPos is the position of the "for" token.
//
func (b *builder) rangeIndexed(fn *Function, x Value, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) { //
// length = len(x)
// index = -1
// loop: (target of continue)
// index++
// if index < length goto body else done
// body:
// k = index
// v = x[index]
// ...body...
// jump loop
// done: (target of break)
// Determine number of iterations.
var length Value if arr, ok := deref(x.Type()).Underlying().(*types.Array); ok { // For array or *array, the number of iterations is
// known statically thanks to the type. We avoid a
// data dependence upon x, permitting later dead-code
// elimination if x is pure, static unrolling, etc.
// Ranging over a nil *array may have >0 iterations.
// We still generate code for x, in case it has effects.
length = intConst(arr.Len()) } else { // length = len(x).
var c Call c.Call.Value = makeLen(x.Type()) c.Call.Args = []Value{x} c.setType(tInt) length = fn.emit(&c) }
index := fn.addLocal(tInt, token.NoPos) emitStore(fn, index, intConst(-1), pos)
loop = fn.newBasicBlock("rangeindex.loop") emitJump(fn, loop) fn.currentBlock = loop
incr := &BinOp{ Op: token.ADD, X: emitLoad(fn, index), Y: vOne, } incr.setType(tInt) emitStore(fn, index, fn.emit(incr), pos)
body := fn.newBasicBlock("rangeindex.body") done = fn.newBasicBlock("rangeindex.done") emitIf(fn, emitCompare(fn, token.LSS, incr, length, token.NoPos), body, done) fn.currentBlock = body
k = emitLoad(fn, index) if tv != nil { switch t := x.Type().Underlying().(type) { case *types.Array: instr := &Index{ X: x, Index: k, } instr.setType(t.Elem()) v = fn.emit(instr)
case *types.Pointer: // *array
instr := &IndexAddr{ X: x, Index: k, } instr.setType(types.NewPointer(t.Elem().Underlying().(*types.Array).Elem())) v = emitLoad(fn, fn.emit(instr))
case *types.Slice: instr := &IndexAddr{ X: x, Index: k, } instr.setType(types.NewPointer(t.Elem())) v = emitLoad(fn, fn.emit(instr))
default: panic("rangeIndexed x:" + t.String()) } } return }
// rangeIter emits to fn the header for a loop using
// Range/Next/Extract to iterate over map or string value x.
// tk and tv are the types of the key/value results k and v, or nil
// if the respective component is not wanted.
//
func (b *builder) rangeIter(fn *Function, x Value, tk, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) { //
// it = range x
// loop: (target of continue)
// okv = next it (ok, key, value)
// ok = extract okv #0
// if ok goto body else done
// body:
// k = extract okv #1
// v = extract okv #2
// ...body...
// jump loop
// done: (target of break)
//
if tk == nil { tk = tInvalid } if tv == nil { tv = tInvalid }
rng := &Range{X: x} rng.setPos(pos) rng.setType(tRangeIter) it := fn.emit(rng)
loop = fn.newBasicBlock("rangeiter.loop") emitJump(fn, loop) fn.currentBlock = loop
_, isString := x.Type().Underlying().(*types.Basic)
okv := &Next{ Iter: it, IsString: isString, } okv.setType(types.NewTuple( varOk, newVar("k", tk), newVar("v", tv), )) fn.emit(okv)
body := fn.newBasicBlock("rangeiter.body") done = fn.newBasicBlock("rangeiter.done") emitIf(fn, emitExtract(fn, okv, 0), body, done) fn.currentBlock = body
if tk != tInvalid { k = emitExtract(fn, okv, 1) } if tv != tInvalid { v = emitExtract(fn, okv, 2) } return }
// rangeChan emits to fn the header for a loop that receives from
// channel x until it fails.
// tk is the channel's element type, or nil if the k result is
// not wanted
// pos is the position of the '=' or ':=' token.
//
func (b *builder) rangeChan(fn *Function, x Value, tk types.Type, pos token.Pos) (k Value, loop, done *BasicBlock) { //
// loop: (target of continue)
// ko = <-x (key, ok)
// ok = extract ko #1
// if ok goto body else done
// body:
// k = extract ko #0
// ...
// goto loop
// done: (target of break)
loop = fn.newBasicBlock("rangechan.loop") emitJump(fn, loop) fn.currentBlock = loop recv := &UnOp{ Op: token.ARROW, X: x, CommaOk: true, } recv.setPos(pos) recv.setType(types.NewTuple( newVar("k", x.Type().Underlying().(*types.Chan).Elem()), varOk, )) ko := fn.emit(recv) body := fn.newBasicBlock("rangechan.body") done = fn.newBasicBlock("rangechan.done") emitIf(fn, emitExtract(fn, ko, 1), body, done) fn.currentBlock = body if tk != nil { k = emitExtract(fn, ko, 0) } return }
// rangeStmt emits to fn code for the range statement s, optionally
// labelled by label.
//
func (b *builder) rangeStmt(fn *Function, s *ast.RangeStmt, label *lblock) { var tk, tv types.Type if s.Key != nil && !isBlankIdent(s.Key) { tk = fn.Pkg.typeOf(s.Key) } if s.Value != nil && !isBlankIdent(s.Value) { tv = fn.Pkg.typeOf(s.Value) }
// If iteration variables are defined (:=), this
// occurs once outside the loop.
//
// Unlike a short variable declaration, a RangeStmt
// using := never redeclares an existing variable; it
// always creates a new one.
if s.Tok == token.DEFINE { if tk != nil { fn.addLocalForIdent(s.Key.(*ast.Ident)) } if tv != nil { fn.addLocalForIdent(s.Value.(*ast.Ident)) } }
x := b.expr(fn, s.X)
var k, v Value var loop, done *BasicBlock switch rt := x.Type().Underlying().(type) { case *types.Slice, *types.Array, *types.Pointer: // *array
k, v, loop, done = b.rangeIndexed(fn, x, tv, s.For)
case *types.Chan: k, loop, done = b.rangeChan(fn, x, tk, s.For)
case *types.Map, *types.Basic: // string
k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For)
default: panic("Cannot range over: " + rt.String()) }
// Evaluate both LHS expressions before we update either.
var kl, vl lvalue if tk != nil { kl = b.addr(fn, s.Key, false) // non-escaping
} if tv != nil { vl = b.addr(fn, s.Value, false) // non-escaping
} if tk != nil { kl.store(fn, k) } if tv != nil { vl.store(fn, v) }
if label != nil { label._break = done label._continue = loop }
fn.targets = &targets{ tail: fn.targets, _break: done, _continue: loop, } b.stmt(fn, s.Body) fn.targets = fn.targets.tail emitJump(fn, loop) // back-edge
fn.currentBlock = done }
// stmt lowers statement s to SSA form, emitting code to fn.
func (b *builder) stmt(fn *Function, _s ast.Stmt) { // The label of the current statement. If non-nil, its _goto
// target is always set; its _break and _continue are set only
// within the body of switch/typeswitch/select/for/range.
// It is effectively an additional default-nil parameter of stmt().
var label *lblock start: switch s := _s.(type) { case *ast.EmptyStmt: // ignore. (Usually removed by gofmt.)
case *ast.DeclStmt: // Con, Var or Typ
d := s.Decl.(*ast.GenDecl) if d.Tok == token.VAR { for _, spec := range d.Specs { if vs, ok := spec.(*ast.ValueSpec); ok { b.localValueSpec(fn, vs) } } }
case *ast.LabeledStmt: label = fn.labelledBlock(s.Label) emitJump(fn, label._goto) fn.currentBlock = label._goto _s = s.Stmt goto start // effectively: tailcall stmt(fn, s.Stmt, label)
case *ast.ExprStmt: b.expr(fn, s.X)
case *ast.SendStmt: fn.emit(&Send{ Chan: b.expr(fn, s.Chan), X: emitConv(fn, b.expr(fn, s.Value), fn.Pkg.typeOf(s.Chan).Underlying().(*types.Chan).Elem()), pos: s.Arrow, })
case *ast.IncDecStmt: op := token.ADD if s.Tok == token.DEC { op = token.SUB } loc := b.addr(fn, s.X, false) b.assignOp(fn, loc, NewConst(exact.MakeInt64(1), loc.typ()), op)
case *ast.AssignStmt: switch s.Tok { case token.ASSIGN, token.DEFINE: b.assignStmt(fn, s.Lhs, s.Rhs, s.Tok == token.DEFINE)
default: // +=, etc.
op := s.Tok + token.ADD - token.ADD_ASSIGN b.assignOp(fn, b.addr(fn, s.Lhs[0], false), b.expr(fn, s.Rhs[0]), op) }
case *ast.GoStmt: // The "intrinsics" new/make/len/cap are forbidden here.
// panic is treated like an ordinary function call.
v := Go{pos: s.Go} b.setCall(fn, s.Call, &v.Call) fn.emit(&v)
case *ast.DeferStmt: // The "intrinsics" new/make/len/cap are forbidden here.
// panic is treated like an ordinary function call.
v := Defer{pos: s.Defer} b.setCall(fn, s.Call, &v.Call) fn.emit(&v)
// A deferred call can cause recovery from panic,
// and control resumes at the Recover block.
createRecoverBlock(fn)
case *ast.ReturnStmt: var results []Value if len(s.Results) == 1 && fn.Signature.Results().Len() > 1 { // Return of one expression in a multi-valued function.
tuple := b.exprN(fn, s.Results[0]) ttuple := tuple.Type().(*types.Tuple) for i, n := 0, ttuple.Len(); i < n; i++ { results = append(results, emitConv(fn, emitExtract(fn, tuple, i), fn.Signature.Results().At(i).Type())) } } else { // 1:1 return, or no-arg return in non-void function.
for i, r := range s.Results { v := emitConv(fn, b.expr(fn, r), fn.Signature.Results().At(i).Type()) results = append(results, v) } } if fn.namedResults != nil { // Function has named result parameters (NRPs).
// Perform parallel assignment of return operands to NRPs.
for i, r := range results { emitStore(fn, fn.namedResults[i], r, s.Return) } } // Run function calls deferred in this
// function when explicitly returning from it.
fn.emit(new(RunDefers)) if fn.namedResults != nil { // Reload NRPs to form the result tuple.
results = results[:0] for _, r := range fn.namedResults { results = append(results, emitLoad(fn, r)) } } fn.emit(&Return{Results: results, pos: s.Return}) fn.currentBlock = fn.newBasicBlock("unreachable")
case *ast.BranchStmt: var block *BasicBlock switch s.Tok { case token.BREAK: if s.Label != nil { block = fn.labelledBlock(s.Label)._break } else { for t := fn.targets; t != nil && block == nil; t = t.tail { block = t._break } }
case token.CONTINUE: if s.Label != nil { block = fn.labelledBlock(s.Label)._continue } else { for t := fn.targets; t != nil && block == nil; t = t.tail { block = t._continue } }
case token.FALLTHROUGH: for t := fn.targets; t != nil && block == nil; t = t.tail { block = t._fallthrough }
case token.GOTO: block = fn.labelledBlock(s.Label)._goto } emitJump(fn, block) fn.currentBlock = fn.newBasicBlock("unreachable")
case *ast.BlockStmt: b.stmtList(fn, s.List)
case *ast.IfStmt: if s.Init != nil { b.stmt(fn, s.Init) } then := fn.newBasicBlock("if.then") done := fn.newBasicBlock("if.done") els := done if s.Else != nil { els = fn.newBasicBlock("if.else") } b.cond(fn, s.Cond, then, els) fn.currentBlock = then b.stmt(fn, s.Body) emitJump(fn, done)
if s.Else != nil { fn.currentBlock = els b.stmt(fn, s.Else) emitJump(fn, done) }
fn.currentBlock = done
case *ast.SwitchStmt: b.switchStmt(fn, s, label)
case *ast.TypeSwitchStmt: b.typeSwitchStmt(fn, s, label)
case *ast.SelectStmt: b.selectStmt(fn, s, label)
case *ast.ForStmt: b.forStmt(fn, s, label)
case *ast.RangeStmt: b.rangeStmt(fn, s, label)
default: panic(fmt.Sprintf("unexpected statement kind: %T", s)) } }
// buildFunction builds SSA code for the body of function fn. Idempotent.
func (b *builder) buildFunction(fn *Function) { if fn.Blocks != nil { return // building already started
}
var recvField *ast.FieldList var body *ast.BlockStmt var functype *ast.FuncType switch n := fn.syntax.(type) { case nil: return // not a Go source function. (Synthetic, or from object file.)
case *ast.FuncDecl: functype = n.Type recvField = n.Recv body = n.Body case *ast.FuncLit: functype = n.Type body = n.Body default: panic(n) }
if body == nil { // External function.
if fn.Params == nil { // This condition ensures we add a non-empty
// params list once only, but we may attempt
// the degenerate empty case repeatedly.
// TODO(adonovan): opt: don't do that.
// We set Function.Params even though there is no body
// code to reference them. This simplifies clients.
if recv := fn.Signature.Recv(); recv != nil { fn.addParamObj(recv) } params := fn.Signature.Params() for i, n := 0, params.Len(); i < n; i++ { fn.addParamObj(params.At(i)) } } return } if fn.Prog.mode&LogSource != 0 { defer logStack("build function %s @ %s", fn, fn.Prog.Fset.Position(fn.pos))() } fn.startBody() fn.createSyntacticParams(recvField, functype) b.stmt(fn, body) if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb == fn.Recover || cb.Preds != nil) { // Control fell off the end of the function's body block.
//
// Block optimizations eliminate the current block, if
// unreachable. It is a builder invariant that
// if this no-arg return is ill-typed for
// fn.Signature.Results, this block must be
// unreachable. The sanity checker checks this.
fn.emit(new(RunDefers)) fn.emit(new(Return)) } fn.finishBody() }
// buildFuncDecl builds SSA code for the function or method declared
// by decl in package pkg.
//
func (b *builder) buildFuncDecl(pkg *Package, decl *ast.FuncDecl) { id := decl.Name if isBlankIdent(id) { return // discard
} fn := pkg.values[pkg.info.Defs[id]].(*Function) if decl.Recv == nil && id.Name == "init" { var v Call v.Call.Value = fn v.setType(types.NewTuple()) pkg.init.emit(&v) } b.buildFunction(fn) }
// Build calls Package.Build for each package in prog.
// Building occurs in parallel unless the BuildSerially mode flag was set.
//
// Build is intended for whole-program analysis; a typical compiler
// need only build a single package.
//
// Build is idempotent and thread-safe.
//
func (prog *Program) Build() { var wg sync.WaitGroup for _, p := range prog.packages { if prog.mode&BuildSerially != 0 { p.Build() } else { wg.Add(1) go func(p *Package) { p.Build() wg.Done() }(p) } } wg.Wait() }
// Build builds SSA code for all functions and vars in package p.
//
// Precondition: CreatePackage must have been called for all of p's
// direct imports (and hence its direct imports must have been
// error-free).
//
// Build is idempotent and thread-safe.
//
func (p *Package) Build() { p.buildOnce.Do(p.build) }
func (p *Package) build() { if p.info == nil { return // synthetic package, e.g. "testmain"
}
// Ensure we have runtime type info for all exported members.
// TODO(adonovan): ideally belongs in memberFromObject, but
// that would require package creation in topological order.
for name, mem := range p.Members { if ast.IsExported(name) { p.Prog.needMethodsOf(mem.Type()) } } if p.Prog.mode&LogSource != 0 { defer logStack("build %s", p)() } init := p.init init.startBody()
var done *BasicBlock
if p.Prog.mode&BareInits == 0 { // Make init() skip if package is already initialized.
initguard := p.Var("init$guard") doinit := init.newBasicBlock("init.start") done = init.newBasicBlock("init.done") emitIf(init, emitLoad(init, initguard), done, doinit) init.currentBlock = doinit emitStore(init, initguard, vTrue, token.NoPos)
// Call the init() function of each package we import.
for _, pkg := range p.Pkg.Imports() { prereq := p.Prog.packages[pkg] if prereq == nil { panic(fmt.Sprintf("Package(%q).Build(): unsatisfied import: Program.CreatePackage(%q) was not called", p.Pkg.Path(), pkg.Path())) } var v Call v.Call.Value = prereq.init v.Call.pos = init.pos v.setType(types.NewTuple()) init.emit(&v) } }
var b builder
// Initialize package-level vars in correct order.
for _, varinit := range p.info.InitOrder { if init.Prog.mode&LogSource != 0 { fmt.Fprintf(os.Stderr, "build global initializer %v @ %s\n", varinit.Lhs, p.Prog.Fset.Position(varinit.Rhs.Pos())) } if len(varinit.Lhs) == 1 { // 1:1 initialization: var x, y = a(), b()
var lval lvalue if v := varinit.Lhs[0]; v.Name() != "_" { lval = &address{addr: p.values[v].(*Global), pos: v.Pos()} } else { lval = blank{} } b.assign(init, lval, varinit.Rhs, true, nil) } else { // n:1 initialization: var x, y := f()
tuple := b.exprN(init, varinit.Rhs) for i, v := range varinit.Lhs { if v.Name() == "_" { continue } emitStore(init, p.values[v].(*Global), emitExtract(init, tuple, i), v.Pos()) } } }
// Build all package-level functions, init functions
// and methods, including unreachable/blank ones.
// We build them in source order, but it's not significant.
for _, file := range p.files { for _, decl := range file.Decls { if decl, ok := decl.(*ast.FuncDecl); ok { b.buildFuncDecl(p, decl) } } }
// Finish up init().
if p.Prog.mode&BareInits == 0 { emitJump(init, done) init.currentBlock = done } init.emit(new(Return)) init.finishBody()
p.info = nil // We no longer need ASTs or go/types deductions.
if p.Prog.mode&SanityCheckFunctions != 0 { sanityCheckPackage(p) } }
// Like ObjectOf, but panics instead of returning nil.
// Only valid during p's create and build phases.
func (p *Package) objectOf(id *ast.Ident) types.Object { if o := p.info.ObjectOf(id); o != nil { return o } panic(fmt.Sprintf("no types.Object for ast.Ident %s @ %s", id.Name, p.Prog.Fset.Position(id.Pos()))) }
// Like TypeOf, but panics instead of returning nil.
// Only valid during p's create and build phases.
func (p *Package) typeOf(e ast.Expr) types.Type { if T := p.info.TypeOf(e); T != nil { return T } panic(fmt.Sprintf("no type for %T @ %s", e, p.Prog.Fset.Position(e.Pos()))) }
|