|
|
// Copyright (C) 2013-2015 by Maxim Bublis <b@codemonkey.ru>
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// Package uuid provides implementation of Universally Unique Identifier (UUID).
// Supported versions are 1, 3, 4 and 5 (as specified in RFC 4122) and
// version 2 (as specified in DCE 1.1).
package uuid
import ( "bytes" "crypto/md5" "crypto/rand" "crypto/sha1" "database/sql/driver" "encoding/binary" "encoding/hex" "fmt" "hash" "net" "os" "sync" "time" )
// UUID layout variants.
const ( VariantNCS = iota VariantRFC4122 VariantMicrosoft VariantFuture )
// UUID DCE domains.
const ( DomainPerson = iota DomainGroup DomainOrg )
// Difference in 100-nanosecond intervals between
// UUID epoch (October 15, 1582) and Unix epoch (January 1, 1970).
const epochStart = 122192928000000000
// Used in string method conversion
const dash byte = '-'
// UUID v1/v2 storage.
var ( storageMutex sync.Mutex storageOnce sync.Once epochFunc = unixTimeFunc clockSequence uint16 lastTime uint64 hardwareAddr [6]byte posixUID = uint32(os.Getuid()) posixGID = uint32(os.Getgid()) )
// String parse helpers.
var ( urnPrefix = []byte("urn:uuid:") byteGroups = []int{8, 4, 4, 4, 12} )
func initClockSequence() { buf := make([]byte, 2) safeRandom(buf) clockSequence = binary.BigEndian.Uint16(buf) }
func initHardwareAddr() { interfaces, err := net.Interfaces() if err == nil { for _, iface := range interfaces { if len(iface.HardwareAddr) >= 6 { copy(hardwareAddr[:], iface.HardwareAddr) return } } }
// Initialize hardwareAddr randomly in case
// of real network interfaces absence
safeRandom(hardwareAddr[:])
// Set multicast bit as recommended in RFC 4122
hardwareAddr[0] |= 0x01 }
func initStorage() { initClockSequence() initHardwareAddr() }
func safeRandom(dest []byte) { if _, err := rand.Read(dest); err != nil { panic(err) } }
// Returns difference in 100-nanosecond intervals between
// UUID epoch (October 15, 1582) and current time.
// This is default epoch calculation function.
func unixTimeFunc() uint64 { return epochStart + uint64(time.Now().UnixNano()/100) }
// UUID representation compliant with specification
// described in RFC 4122.
type UUID [16]byte
// NullUUID can be used with the standard sql package to represent a
// UUID value that can be NULL in the database
type NullUUID struct { UUID UUID Valid bool }
// The nil UUID is special form of UUID that is specified to have all
// 128 bits set to zero.
var Nil = UUID{}
// Predefined namespace UUIDs.
var ( NamespaceDNS, _ = FromString("6ba7b810-9dad-11d1-80b4-00c04fd430c8") NamespaceURL, _ = FromString("6ba7b811-9dad-11d1-80b4-00c04fd430c8") NamespaceOID, _ = FromString("6ba7b812-9dad-11d1-80b4-00c04fd430c8") NamespaceX500, _ = FromString("6ba7b814-9dad-11d1-80b4-00c04fd430c8") )
// And returns result of binary AND of two UUIDs.
func And(u1 UUID, u2 UUID) UUID { u := UUID{} for i := 0; i < 16; i++ { u[i] = u1[i] & u2[i] } return u }
// Or returns result of binary OR of two UUIDs.
func Or(u1 UUID, u2 UUID) UUID { u := UUID{} for i := 0; i < 16; i++ { u[i] = u1[i] | u2[i] } return u }
// Equal returns true if u1 and u2 equals, otherwise returns false.
func Equal(u1 UUID, u2 UUID) bool { return bytes.Equal(u1[:], u2[:]) }
// Version returns algorithm version used to generate UUID.
func (u UUID) Version() uint { return uint(u[6] >> 4) }
// Variant returns UUID layout variant.
func (u UUID) Variant() uint { switch { case (u[8] & 0x80) == 0x00: return VariantNCS case (u[8]&0xc0)|0x80 == 0x80: return VariantRFC4122 case (u[8]&0xe0)|0xc0 == 0xc0: return VariantMicrosoft } return VariantFuture }
// Bytes returns bytes slice representation of UUID.
func (u UUID) Bytes() []byte { return u[:] }
// Returns canonical string representation of UUID:
// xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.
func (u UUID) String() string { buf := make([]byte, 36)
hex.Encode(buf[0:8], u[0:4]) buf[8] = dash hex.Encode(buf[9:13], u[4:6]) buf[13] = dash hex.Encode(buf[14:18], u[6:8]) buf[18] = dash hex.Encode(buf[19:23], u[8:10]) buf[23] = dash hex.Encode(buf[24:], u[10:])
return string(buf) }
// SetVersion sets version bits.
func (u *UUID) SetVersion(v byte) { u[6] = (u[6] & 0x0f) | (v << 4) }
// SetVariant sets variant bits as described in RFC 4122.
func (u *UUID) SetVariant() { u[8] = (u[8] & 0xbf) | 0x80 }
// MarshalText implements the encoding.TextMarshaler interface.
// The encoding is the same as returned by String.
func (u UUID) MarshalText() (text []byte, err error) { text = []byte(u.String()) return }
// UnmarshalText implements the encoding.TextUnmarshaler interface.
// Following formats are supported:
// "6ba7b810-9dad-11d1-80b4-00c04fd430c8",
// "{6ba7b810-9dad-11d1-80b4-00c04fd430c8}",
// "urn:uuid:6ba7b810-9dad-11d1-80b4-00c04fd430c8"
func (u *UUID) UnmarshalText(text []byte) (err error) { if len(text) < 32 { err = fmt.Errorf("uuid: UUID string too short: %s", text) return }
t := text[:] braced := false
if bytes.Equal(t[:9], urnPrefix) { t = t[9:] } else if t[0] == '{' { braced = true t = t[1:] }
b := u[:]
for i, byteGroup := range byteGroups { if i > 0 { if t[0] != '-' { err = fmt.Errorf("uuid: invalid string format") return } t = t[1:] }
if len(t) < byteGroup { err = fmt.Errorf("uuid: UUID string too short: %s", text) return }
if i == 4 && len(t) > byteGroup && ((braced && t[byteGroup] != '}') || len(t[byteGroup:]) > 1 || !braced) { err = fmt.Errorf("uuid: UUID string too long: %s", text) return }
_, err = hex.Decode(b[:byteGroup/2], t[:byteGroup]) if err != nil { return }
t = t[byteGroup:] b = b[byteGroup/2:] }
return }
// MarshalBinary implements the encoding.BinaryMarshaler interface.
func (u UUID) MarshalBinary() (data []byte, err error) { data = u.Bytes() return }
// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
// It will return error if the slice isn't 16 bytes long.
func (u *UUID) UnmarshalBinary(data []byte) (err error) { if len(data) != 16 { err = fmt.Errorf("uuid: UUID must be exactly 16 bytes long, got %d bytes", len(data)) return } copy(u[:], data)
return }
// Value implements the driver.Valuer interface.
func (u UUID) Value() (driver.Value, error) { return u.String(), nil }
// Scan implements the sql.Scanner interface.
// A 16-byte slice is handled by UnmarshalBinary, while
// a longer byte slice or a string is handled by UnmarshalText.
func (u *UUID) Scan(src interface{}) error { switch src := src.(type) { case []byte: if len(src) == 16 { return u.UnmarshalBinary(src) } return u.UnmarshalText(src)
case string: return u.UnmarshalText([]byte(src)) }
return fmt.Errorf("uuid: cannot convert %T to UUID", src) }
// Value implements the driver.Valuer interface.
func (u NullUUID) Value() (driver.Value, error) { if !u.Valid { return nil, nil } // Delegate to UUID Value function
return u.UUID.Value() }
// Scan implements the sql.Scanner interface.
func (u *NullUUID) Scan(src interface{}) error { if src == nil { u.UUID, u.Valid = Nil, false return nil }
// Delegate to UUID Scan function
u.Valid = true return u.UUID.Scan(src) }
// FromBytes returns UUID converted from raw byte slice input.
// It will return error if the slice isn't 16 bytes long.
func FromBytes(input []byte) (u UUID, err error) { err = u.UnmarshalBinary(input) return }
// FromBytesOrNil returns UUID converted from raw byte slice input.
// Same behavior as FromBytes, but returns a Nil UUID on error.
func FromBytesOrNil(input []byte) UUID { uuid, err := FromBytes(input) if err != nil { return Nil } return uuid }
// FromString returns UUID parsed from string input.
// Input is expected in a form accepted by UnmarshalText.
func FromString(input string) (u UUID, err error) { err = u.UnmarshalText([]byte(input)) return }
// FromStringOrNil returns UUID parsed from string input.
// Same behavior as FromString, but returns a Nil UUID on error.
func FromStringOrNil(input string) UUID { uuid, err := FromString(input) if err != nil { return Nil } return uuid }
// Returns UUID v1/v2 storage state.
// Returns epoch timestamp, clock sequence, and hardware address.
func getStorage() (uint64, uint16, []byte) { storageOnce.Do(initStorage)
storageMutex.Lock() defer storageMutex.Unlock()
timeNow := epochFunc() // Clock changed backwards since last UUID generation.
// Should increase clock sequence.
if timeNow <= lastTime { clockSequence++ } lastTime = timeNow
return timeNow, clockSequence, hardwareAddr[:] }
// NewV1 returns UUID based on current timestamp and MAC address.
func NewV1() UUID { u := UUID{}
timeNow, clockSeq, hardwareAddr := getStorage()
binary.BigEndian.PutUint32(u[0:], uint32(timeNow)) binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>32)) binary.BigEndian.PutUint16(u[6:], uint16(timeNow>>48)) binary.BigEndian.PutUint16(u[8:], clockSeq)
copy(u[10:], hardwareAddr)
u.SetVersion(1) u.SetVariant()
return u }
// NewV2 returns DCE Security UUID based on POSIX UID/GID.
func NewV2(domain byte) UUID { u := UUID{}
timeNow, clockSeq, hardwareAddr := getStorage()
switch domain { case DomainPerson: binary.BigEndian.PutUint32(u[0:], posixUID) case DomainGroup: binary.BigEndian.PutUint32(u[0:], posixGID) }
binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>32)) binary.BigEndian.PutUint16(u[6:], uint16(timeNow>>48)) binary.BigEndian.PutUint16(u[8:], clockSeq) u[9] = domain
copy(u[10:], hardwareAddr)
u.SetVersion(2) u.SetVariant()
return u }
// NewV3 returns UUID based on MD5 hash of namespace UUID and name.
func NewV3(ns UUID, name string) UUID { u := newFromHash(md5.New(), ns, name) u.SetVersion(3) u.SetVariant()
return u }
// NewV4 returns random generated UUID.
func NewV4() UUID { u := UUID{} safeRandom(u[:]) u.SetVersion(4) u.SetVariant()
return u }
// NewV5 returns UUID based on SHA-1 hash of namespace UUID and name.
func NewV5(ns UUID, name string) UUID { u := newFromHash(sha1.New(), ns, name) u.SetVersion(5) u.SetVariant()
return u }
// Returns UUID based on hashing of namespace UUID and name.
func newFromHash(h hash.Hash, ns UUID, name string) UUID { u := UUID{} h.Write(ns[:]) h.Write([]byte(name)) copy(u[:], h.Sum(nil))
return u }
|