|
|
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package otr implements the Off The Record protocol as specified in
// http://www.cypherpunks.ca/otr/Protocol-v2-3.1.0.html
package otr // import "golang.org/x/crypto/otr"
import ( "bytes" "crypto/aes" "crypto/cipher" "crypto/dsa" "crypto/hmac" "crypto/rand" "crypto/sha1" "crypto/sha256" "crypto/subtle" "encoding/base64" "encoding/hex" "errors" "hash" "io" "math/big" "strconv" )
// SecurityChange describes a change in the security state of a Conversation.
type SecurityChange int
const ( NoChange SecurityChange = iota // NewKeys indicates that a key exchange has completed. This occurs
// when a conversation first becomes encrypted, and when the keys are
// renegotiated within an encrypted conversation.
NewKeys // SMPSecretNeeded indicates that the peer has started an
// authentication and that we need to supply a secret. Call SMPQuestion
// to get the optional, human readable challenge and then Authenticate
// to supply the matching secret.
SMPSecretNeeded // SMPComplete indicates that an authentication completed. The identity
// of the peer has now been confirmed.
SMPComplete // SMPFailed indicates that an authentication failed.
SMPFailed // ConversationEnded indicates that the peer ended the secure
// conversation.
ConversationEnded )
// QueryMessage can be sent to a peer to start an OTR conversation.
var QueryMessage = "?OTRv2?"
// ErrorPrefix can be used to make an OTR error by appending an error message
// to it.
var ErrorPrefix = "?OTR Error:"
var ( fragmentPartSeparator = []byte(",") fragmentPrefix = []byte("?OTR,") msgPrefix = []byte("?OTR:") queryMarker = []byte("?OTR") )
// isQuery attempts to parse an OTR query from msg and returns the greatest
// common version, or 0 if msg is not an OTR query.
func isQuery(msg []byte) (greatestCommonVersion int) { pos := bytes.Index(msg, queryMarker) if pos == -1 { return 0 } for i, c := range msg[pos+len(queryMarker):] { if i == 0 { if c == '?' { // Indicates support for version 1, but we don't
// implement that.
continue }
if c != 'v' { // Invalid message
return 0 }
continue }
if c == '?' { // End of message
return }
if c == ' ' || c == '\t' { // Probably an invalid message
return 0 }
if c == '2' { greatestCommonVersion = 2 } }
return 0 }
const ( statePlaintext = iota stateEncrypted stateFinished )
const ( authStateNone = iota authStateAwaitingDHKey authStateAwaitingRevealSig authStateAwaitingSig )
const ( msgTypeDHCommit = 2 msgTypeData = 3 msgTypeDHKey = 10 msgTypeRevealSig = 17 msgTypeSig = 18 )
const ( // If the requested fragment size is less than this, it will be ignored.
minFragmentSize = 18 // Messages are padded to a multiple of this number of bytes.
paddingGranularity = 256 // The number of bytes in a Diffie-Hellman private value (320-bits).
dhPrivateBytes = 40 // The number of bytes needed to represent an element of the DSA
// subgroup (160-bits).
dsaSubgroupBytes = 20 // The number of bytes of the MAC that are sent on the wire (160-bits).
macPrefixBytes = 20 )
// These are the global, common group parameters for OTR.
var ( p *big.Int // group prime
g *big.Int // group generator
q *big.Int // group order
pMinus2 *big.Int )
func init() { p, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", 16) q, _ = new(big.Int).SetString("7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68948127044533E63A0105DF531D89CD9128A5043CC71A026EF7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6F71C35FDAD44CFD2D74F9208BE258FF324943328F6722D9EE1003E5C50B1DF82CC6D241B0E2AE9CD348B1FD47E9267AFC1B2AE91EE51D6CB0E3179AB1042A95DCF6A9483B84B4B36B3861AA7255E4C0278BA36046511B993FFFFFFFFFFFFFFFF", 16) g = new(big.Int).SetInt64(2) pMinus2 = new(big.Int).Sub(p, g) }
// Conversation represents a relation with a peer. The zero value is a valid
// Conversation, although PrivateKey must be set.
//
// When communicating with a peer, all inbound messages should be passed to
// Conversation.Receive and all outbound messages to Conversation.Send. The
// Conversation will take care of maintaining the encryption state and
// negotiating encryption as needed.
type Conversation struct { // PrivateKey contains the private key to use to sign key exchanges.
PrivateKey *PrivateKey
// Rand can be set to override the entropy source. Otherwise,
// crypto/rand will be used.
Rand io.Reader // If FragmentSize is set, all messages produced by Receive and Send
// will be fragmented into messages of, at most, this number of bytes.
FragmentSize int
// Once Receive has returned NewKeys once, the following fields are
// valid.
SSID [8]byte TheirPublicKey PublicKey
state, authState int
r [16]byte x, y *big.Int gx, gy *big.Int gxBytes []byte digest [sha256.Size]byte
revealKeys, sigKeys akeKeys
myKeyId uint32 myCurrentDHPub *big.Int myCurrentDHPriv *big.Int myLastDHPub *big.Int myLastDHPriv *big.Int
theirKeyId uint32 theirCurrentDHPub *big.Int theirLastDHPub *big.Int
keySlots [4]keySlot
myCounter [8]byte theirLastCtr [8]byte oldMACs []byte
k, n int // fragment state
frag []byte
smp smpState }
// A keySlot contains key material for a specific (their keyid, my keyid) pair.
type keySlot struct { // used is true if this slot is valid. If false, it's free for reuse.
used bool theirKeyId uint32 myKeyId uint32 sendAESKey, recvAESKey []byte sendMACKey, recvMACKey []byte theirLastCtr [8]byte }
// akeKeys are generated during key exchange. There's one set for the reveal
// signature message and another for the signature message. In the protocol
// spec the latter are indicated with a prime mark.
type akeKeys struct { c [16]byte m1, m2 [32]byte }
func (c *Conversation) rand() io.Reader { if c.Rand != nil { return c.Rand } return rand.Reader }
func (c *Conversation) randMPI(buf []byte) *big.Int { _, err := io.ReadFull(c.rand(), buf) if err != nil { panic("otr: short read from random source") }
return new(big.Int).SetBytes(buf) }
// tlv represents the type-length value from the protocol.
type tlv struct { typ, length uint16 data []byte }
const ( tlvTypePadding = 0 tlvTypeDisconnected = 1 tlvTypeSMP1 = 2 tlvTypeSMP2 = 3 tlvTypeSMP3 = 4 tlvTypeSMP4 = 5 tlvTypeSMPAbort = 6 tlvTypeSMP1WithQuestion = 7 )
// Receive handles a message from a peer. It returns a human readable message,
// an indicator of whether that message was encrypted, a hint about the
// encryption state and zero or more messages to send back to the peer.
// These messages do not need to be passed to Send before transmission.
func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change SecurityChange, toSend [][]byte, err error) { if bytes.HasPrefix(in, fragmentPrefix) { in, err = c.processFragment(in) if in == nil || err != nil { return } }
if bytes.HasPrefix(in, msgPrefix) && in[len(in)-1] == '.' { in = in[len(msgPrefix) : len(in)-1] } else if version := isQuery(in); version > 0 { c.authState = authStateAwaitingDHKey c.reset() toSend = c.encode(c.generateDHCommit()) return } else { // plaintext message
out = in return }
msg := make([]byte, base64.StdEncoding.DecodedLen(len(in))) msgLen, err := base64.StdEncoding.Decode(msg, in) if err != nil { err = errors.New("otr: invalid base64 encoding in message") return } msg = msg[:msgLen]
// The first two bytes are the protocol version (2)
if len(msg) < 3 || msg[0] != 0 || msg[1] != 2 { err = errors.New("otr: invalid OTR message") return }
msgType := int(msg[2]) msg = msg[3:]
switch msgType { case msgTypeDHCommit: switch c.authState { case authStateNone: c.authState = authStateAwaitingRevealSig if err = c.processDHCommit(msg); err != nil { return } c.reset() toSend = c.encode(c.generateDHKey()) return case authStateAwaitingDHKey: // This is a 'SYN-crossing'. The greater digest wins.
var cmp int if cmp, err = c.compareToDHCommit(msg); err != nil { return } if cmp > 0 { // We win. Retransmit DH commit.
toSend = c.encode(c.serializeDHCommit()) return } else { // They win. We forget about our DH commit.
c.authState = authStateAwaitingRevealSig if err = c.processDHCommit(msg); err != nil { return } c.reset() toSend = c.encode(c.generateDHKey()) return } case authStateAwaitingRevealSig: if err = c.processDHCommit(msg); err != nil { return } toSend = c.encode(c.serializeDHKey()) case authStateAwaitingSig: if err = c.processDHCommit(msg); err != nil { return } c.reset() toSend = c.encode(c.generateDHKey()) c.authState = authStateAwaitingRevealSig default: panic("bad state") } case msgTypeDHKey: switch c.authState { case authStateAwaitingDHKey: var isSame bool if isSame, err = c.processDHKey(msg); err != nil { return } if isSame { err = errors.New("otr: unexpected duplicate DH key") return } toSend = c.encode(c.generateRevealSig()) c.authState = authStateAwaitingSig case authStateAwaitingSig: var isSame bool if isSame, err = c.processDHKey(msg); err != nil { return } if isSame { toSend = c.encode(c.serializeDHKey()) } } case msgTypeRevealSig: if c.authState != authStateAwaitingRevealSig { return } if err = c.processRevealSig(msg); err != nil { return } toSend = c.encode(c.generateSig()) c.authState = authStateNone c.state = stateEncrypted change = NewKeys case msgTypeSig: if c.authState != authStateAwaitingSig { return } if err = c.processSig(msg); err != nil { return } c.authState = authStateNone c.state = stateEncrypted change = NewKeys case msgTypeData: if c.state != stateEncrypted { err = errors.New("otr: encrypted message received without encrypted session established") return } var tlvs []tlv out, tlvs, err = c.processData(msg) encrypted = true
EachTLV: for _, inTLV := range tlvs { switch inTLV.typ { case tlvTypeDisconnected: change = ConversationEnded c.state = stateFinished break EachTLV case tlvTypeSMP1, tlvTypeSMP2, tlvTypeSMP3, tlvTypeSMP4, tlvTypeSMPAbort, tlvTypeSMP1WithQuestion: var reply tlv var complete bool reply, complete, err = c.processSMP(inTLV) if err == smpSecretMissingError { err = nil change = SMPSecretNeeded c.smp.saved = &inTLV return } if err == smpFailureError { err = nil change = SMPFailed } else if complete { change = SMPComplete } if reply.typ != 0 { toSend = c.encode(c.generateData(nil, &reply)) } break EachTLV default: // skip unknown TLVs
} } default: err = errors.New("otr: unknown message type " + strconv.Itoa(msgType)) }
return }
// Send takes a human readable message from the local user, possibly encrypts
// it and returns zero one or more messages to send to the peer.
func (c *Conversation) Send(msg []byte) ([][]byte, error) { switch c.state { case statePlaintext: return [][]byte{msg}, nil case stateEncrypted: return c.encode(c.generateData(msg, nil)), nil case stateFinished: return nil, errors.New("otr: cannot send message because secure conversation has finished") }
return nil, errors.New("otr: cannot send message in current state") }
// SMPQuestion returns the human readable challenge question from the peer.
// It's only valid after Receive has returned SMPSecretNeeded.
func (c *Conversation) SMPQuestion() string { return c.smp.question }
// Authenticate begins an authentication with the peer. Authentication involves
// an optional challenge message and a shared secret. The authentication
// proceeds until either Receive returns SMPComplete, SMPSecretNeeded (which
// indicates that a new authentication is happening and thus this one was
// aborted) or SMPFailed.
func (c *Conversation) Authenticate(question string, mutualSecret []byte) (toSend [][]byte, err error) { if c.state != stateEncrypted { err = errors.New("otr: can't authenticate a peer without a secure conversation established") return }
if c.smp.saved != nil { c.calcSMPSecret(mutualSecret, false /* they started it */)
var out tlv var complete bool out, complete, err = c.processSMP(*c.smp.saved) if complete { panic("SMP completed on the first message") } c.smp.saved = nil if out.typ != 0 { toSend = c.encode(c.generateData(nil, &out)) } return }
c.calcSMPSecret(mutualSecret, true /* we started it */) outs := c.startSMP(question) for _, out := range outs { toSend = append(toSend, c.encode(c.generateData(nil, &out))...) } return }
// End ends a secure conversation by generating a termination message for
// the peer and switches to unencrypted communication.
func (c *Conversation) End() (toSend [][]byte) { switch c.state { case statePlaintext: return nil case stateEncrypted: c.state = statePlaintext return c.encode(c.generateData(nil, &tlv{typ: tlvTypeDisconnected})) case stateFinished: c.state = statePlaintext return nil } panic("unreachable") }
// IsEncrypted returns true if a message passed to Send would be encrypted
// before transmission. This result remains valid until the next call to
// Receive or End, which may change the state of the Conversation.
func (c *Conversation) IsEncrypted() bool { return c.state == stateEncrypted }
var fragmentError = errors.New("otr: invalid OTR fragment")
// processFragment processes a fragmented OTR message and possibly returns a
// complete message. Fragmented messages look like "?OTR,k,n,msg," where k is
// the fragment number (starting from 1), n is the number of fragments in this
// message and msg is a substring of the base64 encoded message.
func (c *Conversation) processFragment(in []byte) (out []byte, err error) { in = in[len(fragmentPrefix):] // remove "?OTR,"
parts := bytes.Split(in, fragmentPartSeparator) if len(parts) != 4 || len(parts[3]) != 0 { return nil, fragmentError }
k, err := strconv.Atoi(string(parts[0])) if err != nil { return nil, fragmentError }
n, err := strconv.Atoi(string(parts[1])) if err != nil { return nil, fragmentError }
if k < 1 || n < 1 || k > n { return nil, fragmentError }
if k == 1 { c.frag = append(c.frag[:0], parts[2]...) c.k, c.n = k, n } else if n == c.n && k == c.k+1 { c.frag = append(c.frag, parts[2]...) c.k++ } else { c.frag = c.frag[:0] c.n, c.k = 0, 0 }
if c.n > 0 && c.k == c.n { c.n, c.k = 0, 0 return c.frag, nil }
return nil, nil }
func (c *Conversation) generateDHCommit() []byte { _, err := io.ReadFull(c.rand(), c.r[:]) if err != nil { panic("otr: short read from random source") }
var xBytes [dhPrivateBytes]byte c.x = c.randMPI(xBytes[:]) c.gx = new(big.Int).Exp(g, c.x, p) c.gy = nil c.gxBytes = appendMPI(nil, c.gx)
h := sha256.New() h.Write(c.gxBytes) h.Sum(c.digest[:0])
aesCipher, err := aes.NewCipher(c.r[:]) if err != nil { panic(err.Error()) }
var iv [aes.BlockSize]byte ctr := cipher.NewCTR(aesCipher, iv[:]) ctr.XORKeyStream(c.gxBytes, c.gxBytes)
return c.serializeDHCommit() }
func (c *Conversation) serializeDHCommit() []byte { var ret []byte ret = appendU16(ret, 2) // protocol version
ret = append(ret, msgTypeDHCommit) ret = appendData(ret, c.gxBytes) ret = appendData(ret, c.digest[:]) return ret }
func (c *Conversation) processDHCommit(in []byte) error { var ok1, ok2 bool c.gxBytes, in, ok1 = getData(in) digest, in, ok2 := getData(in) if !ok1 || !ok2 || len(in) > 0 { return errors.New("otr: corrupt DH commit message") } copy(c.digest[:], digest) return nil }
func (c *Conversation) compareToDHCommit(in []byte) (int, error) { _, in, ok1 := getData(in) digest, in, ok2 := getData(in) if !ok1 || !ok2 || len(in) > 0 { return 0, errors.New("otr: corrupt DH commit message") } return bytes.Compare(c.digest[:], digest), nil }
func (c *Conversation) generateDHKey() []byte { var yBytes [dhPrivateBytes]byte c.y = c.randMPI(yBytes[:]) c.gy = new(big.Int).Exp(g, c.y, p) return c.serializeDHKey() }
func (c *Conversation) serializeDHKey() []byte { var ret []byte ret = appendU16(ret, 2) // protocol version
ret = append(ret, msgTypeDHKey) ret = appendMPI(ret, c.gy) return ret }
func (c *Conversation) processDHKey(in []byte) (isSame bool, err error) { gy, in, ok := getMPI(in) if !ok { err = errors.New("otr: corrupt DH key message") return } if gy.Cmp(g) < 0 || gy.Cmp(pMinus2) > 0 { err = errors.New("otr: DH value out of range") return } if c.gy != nil { isSame = c.gy.Cmp(gy) == 0 return } c.gy = gy return }
func (c *Conversation) generateEncryptedSignature(keys *akeKeys, xFirst bool) ([]byte, []byte) { var xb []byte xb = c.PrivateKey.PublicKey.Serialize(xb)
var verifyData []byte if xFirst { verifyData = appendMPI(verifyData, c.gx) verifyData = appendMPI(verifyData, c.gy) } else { verifyData = appendMPI(verifyData, c.gy) verifyData = appendMPI(verifyData, c.gx) } verifyData = append(verifyData, xb...) verifyData = appendU32(verifyData, c.myKeyId)
mac := hmac.New(sha256.New, keys.m1[:]) mac.Write(verifyData) mb := mac.Sum(nil)
xb = appendU32(xb, c.myKeyId) xb = append(xb, c.PrivateKey.Sign(c.rand(), mb)...)
aesCipher, err := aes.NewCipher(keys.c[:]) if err != nil { panic(err.Error()) } var iv [aes.BlockSize]byte ctr := cipher.NewCTR(aesCipher, iv[:]) ctr.XORKeyStream(xb, xb)
mac = hmac.New(sha256.New, keys.m2[:]) encryptedSig := appendData(nil, xb) mac.Write(encryptedSig)
return encryptedSig, mac.Sum(nil) }
func (c *Conversation) generateRevealSig() []byte { s := new(big.Int).Exp(c.gy, c.x, p) c.calcAKEKeys(s) c.myKeyId++
encryptedSig, mac := c.generateEncryptedSignature(&c.revealKeys, true /* gx comes first */)
c.myCurrentDHPub = c.gx c.myCurrentDHPriv = c.x c.rotateDHKeys() incCounter(&c.myCounter)
var ret []byte ret = appendU16(ret, 2) ret = append(ret, msgTypeRevealSig) ret = appendData(ret, c.r[:]) ret = append(ret, encryptedSig...) ret = append(ret, mac[:20]...) return ret }
func (c *Conversation) processEncryptedSig(encryptedSig, theirMAC []byte, keys *akeKeys, xFirst bool) error { mac := hmac.New(sha256.New, keys.m2[:]) mac.Write(appendData(nil, encryptedSig)) myMAC := mac.Sum(nil)[:20]
if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 { return errors.New("bad signature MAC in encrypted signature") }
aesCipher, err := aes.NewCipher(keys.c[:]) if err != nil { panic(err.Error()) } var iv [aes.BlockSize]byte ctr := cipher.NewCTR(aesCipher, iv[:]) ctr.XORKeyStream(encryptedSig, encryptedSig)
sig := encryptedSig sig, ok1 := c.TheirPublicKey.Parse(sig) keyId, sig, ok2 := getU32(sig) if !ok1 || !ok2 { return errors.New("otr: corrupt encrypted signature") }
var verifyData []byte if xFirst { verifyData = appendMPI(verifyData, c.gx) verifyData = appendMPI(verifyData, c.gy) } else { verifyData = appendMPI(verifyData, c.gy) verifyData = appendMPI(verifyData, c.gx) } verifyData = c.TheirPublicKey.Serialize(verifyData) verifyData = appendU32(verifyData, keyId)
mac = hmac.New(sha256.New, keys.m1[:]) mac.Write(verifyData) mb := mac.Sum(nil)
sig, ok1 = c.TheirPublicKey.Verify(mb, sig) if !ok1 { return errors.New("bad signature in encrypted signature") } if len(sig) > 0 { return errors.New("corrupt encrypted signature") }
c.theirKeyId = keyId zero(c.theirLastCtr[:]) return nil }
func (c *Conversation) processRevealSig(in []byte) error { r, in, ok1 := getData(in) encryptedSig, in, ok2 := getData(in) theirMAC := in if !ok1 || !ok2 || len(theirMAC) != 20 { return errors.New("otr: corrupt reveal signature message") }
aesCipher, err := aes.NewCipher(r) if err != nil { return errors.New("otr: cannot create AES cipher from reveal signature message: " + err.Error()) } var iv [aes.BlockSize]byte ctr := cipher.NewCTR(aesCipher, iv[:]) ctr.XORKeyStream(c.gxBytes, c.gxBytes) h := sha256.New() h.Write(c.gxBytes) digest := h.Sum(nil) if len(digest) != len(c.digest) || subtle.ConstantTimeCompare(digest, c.digest[:]) == 0 { return errors.New("otr: bad commit MAC in reveal signature message") } var rest []byte c.gx, rest, ok1 = getMPI(c.gxBytes) if !ok1 || len(rest) > 0 { return errors.New("otr: gx corrupt after decryption") } if c.gx.Cmp(g) < 0 || c.gx.Cmp(pMinus2) > 0 { return errors.New("otr: DH value out of range") } s := new(big.Int).Exp(c.gx, c.y, p) c.calcAKEKeys(s)
if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.revealKeys, true /* gx comes first */); err != nil { return errors.New("otr: in reveal signature message: " + err.Error()) }
c.theirCurrentDHPub = c.gx c.theirLastDHPub = nil
return nil }
func (c *Conversation) generateSig() []byte { c.myKeyId++
encryptedSig, mac := c.generateEncryptedSignature(&c.sigKeys, false /* gy comes first */)
c.myCurrentDHPub = c.gy c.myCurrentDHPriv = c.y c.rotateDHKeys() incCounter(&c.myCounter)
var ret []byte ret = appendU16(ret, 2) ret = append(ret, msgTypeSig) ret = append(ret, encryptedSig...) ret = append(ret, mac[:macPrefixBytes]...) return ret }
func (c *Conversation) processSig(in []byte) error { encryptedSig, in, ok1 := getData(in) theirMAC := in if !ok1 || len(theirMAC) != macPrefixBytes { return errors.New("otr: corrupt signature message") }
if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.sigKeys, false /* gy comes first */); err != nil { return errors.New("otr: in signature message: " + err.Error()) }
c.theirCurrentDHPub = c.gy c.theirLastDHPub = nil
return nil }
func (c *Conversation) rotateDHKeys() { // evict slots using our retired key id
for i := range c.keySlots { slot := &c.keySlots[i] if slot.used && slot.myKeyId == c.myKeyId-1 { slot.used = false c.oldMACs = append(c.oldMACs, slot.recvMACKey...) } }
c.myLastDHPriv = c.myCurrentDHPriv c.myLastDHPub = c.myCurrentDHPub
var xBytes [dhPrivateBytes]byte c.myCurrentDHPriv = c.randMPI(xBytes[:]) c.myCurrentDHPub = new(big.Int).Exp(g, c.myCurrentDHPriv, p) c.myKeyId++ }
func (c *Conversation) processData(in []byte) (out []byte, tlvs []tlv, err error) { origIn := in flags, in, ok1 := getU8(in) theirKeyId, in, ok2 := getU32(in) myKeyId, in, ok3 := getU32(in) y, in, ok4 := getMPI(in) counter, in, ok5 := getNBytes(in, 8) encrypted, in, ok6 := getData(in) macedData := origIn[:len(origIn)-len(in)] theirMAC, in, ok7 := getNBytes(in, macPrefixBytes) _, in, ok8 := getData(in) if !ok1 || !ok2 || !ok3 || !ok4 || !ok5 || !ok6 || !ok7 || !ok8 || len(in) > 0 { err = errors.New("otr: corrupt data message") return }
ignoreErrors := flags&1 != 0
slot, err := c.calcDataKeys(myKeyId, theirKeyId) if err != nil { if ignoreErrors { err = nil } return }
mac := hmac.New(sha1.New, slot.recvMACKey) mac.Write([]byte{0, 2, 3}) mac.Write(macedData) myMAC := mac.Sum(nil) if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 { if !ignoreErrors { err = errors.New("otr: bad MAC on data message") } return }
if bytes.Compare(counter, slot.theirLastCtr[:]) <= 0 { err = errors.New("otr: counter regressed") return } copy(slot.theirLastCtr[:], counter)
var iv [aes.BlockSize]byte copy(iv[:], counter) aesCipher, err := aes.NewCipher(slot.recvAESKey) if err != nil { panic(err.Error()) } ctr := cipher.NewCTR(aesCipher, iv[:]) ctr.XORKeyStream(encrypted, encrypted) decrypted := encrypted
if myKeyId == c.myKeyId { c.rotateDHKeys() } if theirKeyId == c.theirKeyId { // evict slots using their retired key id
for i := range c.keySlots { slot := &c.keySlots[i] if slot.used && slot.theirKeyId == theirKeyId-1 { slot.used = false c.oldMACs = append(c.oldMACs, slot.recvMACKey...) } }
c.theirLastDHPub = c.theirCurrentDHPub c.theirKeyId++ c.theirCurrentDHPub = y }
if nulPos := bytes.IndexByte(decrypted, 0); nulPos >= 0 { out = decrypted[:nulPos] tlvData := decrypted[nulPos+1:] for len(tlvData) > 0 { var t tlv var ok1, ok2, ok3 bool
t.typ, tlvData, ok1 = getU16(tlvData) t.length, tlvData, ok2 = getU16(tlvData) t.data, tlvData, ok3 = getNBytes(tlvData, int(t.length)) if !ok1 || !ok2 || !ok3 { err = errors.New("otr: corrupt tlv data") return } tlvs = append(tlvs, t) } } else { out = decrypted }
return }
func (c *Conversation) generateData(msg []byte, extra *tlv) []byte { slot, err := c.calcDataKeys(c.myKeyId-1, c.theirKeyId) if err != nil { panic("otr: failed to generate sending keys: " + err.Error()) }
var plaintext []byte plaintext = append(plaintext, msg...) plaintext = append(plaintext, 0)
padding := paddingGranularity - ((len(plaintext) + 4) % paddingGranularity) plaintext = appendU16(plaintext, tlvTypePadding) plaintext = appendU16(plaintext, uint16(padding)) for i := 0; i < padding; i++ { plaintext = append(plaintext, 0) }
if extra != nil { plaintext = appendU16(plaintext, extra.typ) plaintext = appendU16(plaintext, uint16(len(extra.data))) plaintext = append(plaintext, extra.data...) }
encrypted := make([]byte, len(plaintext))
var iv [aes.BlockSize]byte copy(iv[:], c.myCounter[:]) aesCipher, err := aes.NewCipher(slot.sendAESKey) if err != nil { panic(err.Error()) } ctr := cipher.NewCTR(aesCipher, iv[:]) ctr.XORKeyStream(encrypted, plaintext)
var ret []byte ret = appendU16(ret, 2) ret = append(ret, msgTypeData) ret = append(ret, 0 /* flags */) ret = appendU32(ret, c.myKeyId-1) ret = appendU32(ret, c.theirKeyId) ret = appendMPI(ret, c.myCurrentDHPub) ret = append(ret, c.myCounter[:]...) ret = appendData(ret, encrypted)
mac := hmac.New(sha1.New, slot.sendMACKey) mac.Write(ret) ret = append(ret, mac.Sum(nil)[:macPrefixBytes]...) ret = appendData(ret, c.oldMACs) c.oldMACs = nil incCounter(&c.myCounter)
return ret }
func incCounter(counter *[8]byte) { for i := 7; i >= 0; i-- { counter[i]++ if counter[i] > 0 { break } } }
// calcDataKeys computes the keys used to encrypt a data message given the key
// IDs.
func (c *Conversation) calcDataKeys(myKeyId, theirKeyId uint32) (slot *keySlot, err error) { // Check for a cache hit.
for i := range c.keySlots { slot = &c.keySlots[i] if slot.used && slot.theirKeyId == theirKeyId && slot.myKeyId == myKeyId { return } }
// Find an empty slot to write into.
slot = nil for i := range c.keySlots { if !c.keySlots[i].used { slot = &c.keySlots[i] break } } if slot == nil { return nil, errors.New("otr: internal error: no more key slots") }
var myPriv, myPub, theirPub *big.Int
if myKeyId == c.myKeyId { myPriv = c.myCurrentDHPriv myPub = c.myCurrentDHPub } else if myKeyId == c.myKeyId-1 { myPriv = c.myLastDHPriv myPub = c.myLastDHPub } else { err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when I'm on " + strconv.FormatUint(uint64(c.myKeyId), 10)) return }
if theirKeyId == c.theirKeyId { theirPub = c.theirCurrentDHPub } else if theirKeyId == c.theirKeyId-1 && c.theirLastDHPub != nil { theirPub = c.theirLastDHPub } else { err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when they're on " + strconv.FormatUint(uint64(c.myKeyId), 10)) return }
var sendPrefixByte, recvPrefixByte [1]byte
if myPub.Cmp(theirPub) > 0 { // we're the high end
sendPrefixByte[0], recvPrefixByte[0] = 1, 2 } else { // we're the low end
sendPrefixByte[0], recvPrefixByte[0] = 2, 1 }
s := new(big.Int).Exp(theirPub, myPriv, p) sBytes := appendMPI(nil, s)
h := sha1.New() h.Write(sendPrefixByte[:]) h.Write(sBytes) slot.sendAESKey = h.Sum(slot.sendAESKey[:0])[:16]
h.Reset() h.Write(slot.sendAESKey) slot.sendMACKey = h.Sum(slot.sendMACKey[:0])
h.Reset() h.Write(recvPrefixByte[:]) h.Write(sBytes) slot.recvAESKey = h.Sum(slot.recvAESKey[:0])[:16]
h.Reset() h.Write(slot.recvAESKey) slot.recvMACKey = h.Sum(slot.recvMACKey[:0])
slot.theirKeyId = theirKeyId slot.myKeyId = myKeyId slot.used = true
zero(slot.theirLastCtr[:]) return }
func (c *Conversation) calcAKEKeys(s *big.Int) { mpi := appendMPI(nil, s) h := sha256.New()
var cBytes [32]byte hashWithPrefix(c.SSID[:], 0, mpi, h)
hashWithPrefix(cBytes[:], 1, mpi, h) copy(c.revealKeys.c[:], cBytes[:16]) copy(c.sigKeys.c[:], cBytes[16:])
hashWithPrefix(c.revealKeys.m1[:], 2, mpi, h) hashWithPrefix(c.revealKeys.m2[:], 3, mpi, h) hashWithPrefix(c.sigKeys.m1[:], 4, mpi, h) hashWithPrefix(c.sigKeys.m2[:], 5, mpi, h) }
func hashWithPrefix(out []byte, prefix byte, in []byte, h hash.Hash) { h.Reset() var p [1]byte p[0] = prefix h.Write(p[:]) h.Write(in) if len(out) == h.Size() { h.Sum(out[:0]) } else { digest := h.Sum(nil) copy(out, digest) } }
func (c *Conversation) encode(msg []byte) [][]byte { b64 := make([]byte, base64.StdEncoding.EncodedLen(len(msg))+len(msgPrefix)+1) base64.StdEncoding.Encode(b64[len(msgPrefix):], msg) copy(b64, msgPrefix) b64[len(b64)-1] = '.'
if c.FragmentSize < minFragmentSize || len(b64) <= c.FragmentSize { // We can encode this in a single fragment.
return [][]byte{b64} }
// We have to fragment this message.
var ret [][]byte bytesPerFragment := c.FragmentSize - minFragmentSize numFragments := (len(b64) + bytesPerFragment) / bytesPerFragment
for i := 0; i < numFragments; i++ { frag := []byte("?OTR," + strconv.Itoa(i+1) + "," + strconv.Itoa(numFragments) + ",") todo := bytesPerFragment if todo > len(b64) { todo = len(b64) } frag = append(frag, b64[:todo]...) b64 = b64[todo:] frag = append(frag, ',') ret = append(ret, frag) }
return ret }
func (c *Conversation) reset() { c.myKeyId = 0
for i := range c.keySlots { c.keySlots[i].used = false } }
type PublicKey struct { dsa.PublicKey }
func (pk *PublicKey) Parse(in []byte) ([]byte, bool) { var ok bool var pubKeyType uint16
if pubKeyType, in, ok = getU16(in); !ok || pubKeyType != 0 { return nil, false } if pk.P, in, ok = getMPI(in); !ok { return nil, false } if pk.Q, in, ok = getMPI(in); !ok { return nil, false } if pk.G, in, ok = getMPI(in); !ok { return nil, false } if pk.Y, in, ok = getMPI(in); !ok { return nil, false }
return in, true }
func (pk *PublicKey) Serialize(in []byte) []byte { in = appendU16(in, 0) in = appendMPI(in, pk.P) in = appendMPI(in, pk.Q) in = appendMPI(in, pk.G) in = appendMPI(in, pk.Y) return in }
// Fingerprint returns the 20-byte, binary fingerprint of the PublicKey.
func (pk *PublicKey) Fingerprint() []byte { b := pk.Serialize(nil) h := sha1.New() h.Write(b[2:]) return h.Sum(nil) }
func (pk *PublicKey) Verify(hashed, sig []byte) ([]byte, bool) { if len(sig) != 2*dsaSubgroupBytes { return nil, false } r := new(big.Int).SetBytes(sig[:dsaSubgroupBytes]) s := new(big.Int).SetBytes(sig[dsaSubgroupBytes:]) ok := dsa.Verify(&pk.PublicKey, hashed, r, s) return sig[dsaSubgroupBytes*2:], ok }
type PrivateKey struct { PublicKey dsa.PrivateKey }
func (priv *PrivateKey) Sign(rand io.Reader, hashed []byte) []byte { r, s, err := dsa.Sign(rand, &priv.PrivateKey, hashed) if err != nil { panic(err.Error()) } rBytes := r.Bytes() sBytes := s.Bytes() if len(rBytes) > dsaSubgroupBytes || len(sBytes) > dsaSubgroupBytes { panic("DSA signature too large") }
out := make([]byte, 2*dsaSubgroupBytes) copy(out[dsaSubgroupBytes-len(rBytes):], rBytes) copy(out[len(out)-len(sBytes):], sBytes) return out }
func (priv *PrivateKey) Serialize(in []byte) []byte { in = priv.PublicKey.Serialize(in) in = appendMPI(in, priv.PrivateKey.X) return in }
func (priv *PrivateKey) Parse(in []byte) ([]byte, bool) { in, ok := priv.PublicKey.Parse(in) if !ok { return in, ok } priv.PrivateKey.PublicKey = priv.PublicKey.PublicKey priv.PrivateKey.X, in, ok = getMPI(in) return in, ok }
func (priv *PrivateKey) Generate(rand io.Reader) { if err := dsa.GenerateParameters(&priv.PrivateKey.PublicKey.Parameters, rand, dsa.L1024N160); err != nil { panic(err.Error()) } if err := dsa.GenerateKey(&priv.PrivateKey, rand); err != nil { panic(err.Error()) } priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey }
func notHex(r rune) bool { if r >= '0' && r <= '9' || r >= 'a' && r <= 'f' || r >= 'A' && r <= 'F' { return false }
return true }
// Import parses the contents of a libotr private key file.
func (priv *PrivateKey) Import(in []byte) bool { mpiStart := []byte(" #")
mpis := make([]*big.Int, 5)
for i := 0; i < len(mpis); i++ { start := bytes.Index(in, mpiStart) if start == -1 { return false } in = in[start+len(mpiStart):] end := bytes.IndexFunc(in, notHex) if end == -1 { return false } hexBytes := in[:end] in = in[end:]
if len(hexBytes)&1 != 0 { return false }
mpiBytes := make([]byte, len(hexBytes)/2) if _, err := hex.Decode(mpiBytes, hexBytes); err != nil { return false }
mpis[i] = new(big.Int).SetBytes(mpiBytes) }
for _, mpi := range mpis { if mpi.Sign() <= 0 { return false } }
priv.PrivateKey.P = mpis[0] priv.PrivateKey.Q = mpis[1] priv.PrivateKey.G = mpis[2] priv.PrivateKey.Y = mpis[3] priv.PrivateKey.X = mpis[4] priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey
a := new(big.Int).Exp(priv.PrivateKey.G, priv.PrivateKey.X, priv.PrivateKey.P) return a.Cmp(priv.PrivateKey.Y) == 0 }
func getU8(in []byte) (uint8, []byte, bool) { if len(in) < 1 { return 0, in, false } return in[0], in[1:], true }
func getU16(in []byte) (uint16, []byte, bool) { if len(in) < 2 { return 0, in, false } r := uint16(in[0])<<8 | uint16(in[1]) return r, in[2:], true }
func getU32(in []byte) (uint32, []byte, bool) { if len(in) < 4 { return 0, in, false } r := uint32(in[0])<<24 | uint32(in[1])<<16 | uint32(in[2])<<8 | uint32(in[3]) return r, in[4:], true }
func getMPI(in []byte) (*big.Int, []byte, bool) { l, in, ok := getU32(in) if !ok || uint32(len(in)) < l { return nil, in, false } r := new(big.Int).SetBytes(in[:l]) return r, in[l:], true }
func getData(in []byte) ([]byte, []byte, bool) { l, in, ok := getU32(in) if !ok || uint32(len(in)) < l { return nil, in, false } return in[:l], in[l:], true }
func getNBytes(in []byte, n int) ([]byte, []byte, bool) { if len(in) < n { return nil, in, false } return in[:n], in[n:], true }
func appendU16(out []byte, v uint16) []byte { out = append(out, byte(v>>8), byte(v)) return out }
func appendU32(out []byte, v uint32) []byte { out = append(out, byte(v>>24), byte(v>>16), byte(v>>8), byte(v)) return out }
func appendData(out, v []byte) []byte { out = appendU32(out, uint32(len(v))) out = append(out, v...) return out }
func appendMPI(out []byte, v *big.Int) []byte { vBytes := v.Bytes() out = appendU32(out, uint32(len(vBytes))) out = append(out, vBytes...) return out }
func appendMPIs(out []byte, mpis ...*big.Int) []byte { for _, mpi := range mpis { out = appendMPI(out, mpi) } return out }
func zero(b []byte) { for i := range b { b[i] = 0 } }
|