|
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssh
import ( "crypto" "crypto/rand" "fmt" "io" "math" "sync"
_ "crypto/sha1" _ "crypto/sha256" _ "crypto/sha512" )
// These are string constants in the SSH protocol.
const ( compressionNone = "none" serviceUserAuth = "ssh-userauth" serviceSSH = "ssh-connection" )
// supportedCiphers specifies the supported ciphers in preference order.
var supportedCiphers = []string{ "aes128-ctr", "aes192-ctr", "aes256-ctr", "aes128-gcm@openssh.com", "arcfour256", "arcfour128", }
// supportedKexAlgos specifies the supported key-exchange algorithms in
// preference order.
var supportedKexAlgos = []string{ kexAlgoCurve25519SHA256, // P384 and P521 are not constant-time yet, but since we don't
// reuse ephemeral keys, using them for ECDH should be OK.
kexAlgoECDH256, kexAlgoECDH384, kexAlgoECDH521, kexAlgoDH14SHA1, kexAlgoDH1SHA1, }
// supportedHostKeyAlgos specifies the supported host-key algorithms (i.e. methods
// of authenticating servers) in preference order.
var supportedHostKeyAlgos = []string{ CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoED25519v01,
KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521, KeyAlgoRSA, KeyAlgoDSA,
KeyAlgoED25519, }
// supportedMACs specifies a default set of MAC algorithms in preference order.
// This is based on RFC 4253, section 6.4, but with hmac-md5 variants removed
// because they have reached the end of their useful life.
var supportedMACs = []string{ "hmac-sha2-256-etm@openssh.com", "hmac-sha2-256", "hmac-sha1", "hmac-sha1-96", }
var supportedCompressions = []string{compressionNone}
// hashFuncs keeps the mapping of supported algorithms to their respective
// hashes needed for signature verification.
var hashFuncs = map[string]crypto.Hash{ KeyAlgoRSA: crypto.SHA1, KeyAlgoDSA: crypto.SHA1, KeyAlgoECDSA256: crypto.SHA256, KeyAlgoECDSA384: crypto.SHA384, KeyAlgoECDSA521: crypto.SHA512, CertAlgoRSAv01: crypto.SHA1, CertAlgoDSAv01: crypto.SHA1, CertAlgoECDSA256v01: crypto.SHA256, CertAlgoECDSA384v01: crypto.SHA384, CertAlgoECDSA521v01: crypto.SHA512, }
// unexpectedMessageError results when the SSH message that we received didn't
// match what we wanted.
func unexpectedMessageError(expected, got uint8) error { return fmt.Errorf("ssh: unexpected message type %d (expected %d)", got, expected) }
// parseError results from a malformed SSH message.
func parseError(tag uint8) error { return fmt.Errorf("ssh: parse error in message type %d", tag) }
func findCommon(what string, client []string, server []string) (common string, err error) { for _, c := range client { for _, s := range server { if c == s { return c, nil } } } return "", fmt.Errorf("ssh: no common algorithm for %s; client offered: %v, server offered: %v", what, client, server) }
type directionAlgorithms struct { Cipher string MAC string Compression string }
// rekeyBytes returns a rekeying intervals in bytes.
func (a *directionAlgorithms) rekeyBytes() int64 { // According to RFC4344 block ciphers should rekey after
// 2^(BLOCKSIZE/4) blocks. For all AES flavors BLOCKSIZE is
// 128.
switch a.Cipher { case "aes128-ctr", "aes192-ctr", "aes256-ctr", gcmCipherID, aes128cbcID: return 16 * (1 << 32)
}
// For others, stick with RFC4253 recommendation to rekey after 1 Gb of data.
return 1 << 30 }
type algorithms struct { kex string hostKey string w directionAlgorithms r directionAlgorithms }
func findAgreedAlgorithms(clientKexInit, serverKexInit *kexInitMsg) (algs *algorithms, err error) { result := &algorithms{}
result.kex, err = findCommon("key exchange", clientKexInit.KexAlgos, serverKexInit.KexAlgos) if err != nil { return }
result.hostKey, err = findCommon("host key", clientKexInit.ServerHostKeyAlgos, serverKexInit.ServerHostKeyAlgos) if err != nil { return }
result.w.Cipher, err = findCommon("client to server cipher", clientKexInit.CiphersClientServer, serverKexInit.CiphersClientServer) if err != nil { return }
result.r.Cipher, err = findCommon("server to client cipher", clientKexInit.CiphersServerClient, serverKexInit.CiphersServerClient) if err != nil { return }
result.w.MAC, err = findCommon("client to server MAC", clientKexInit.MACsClientServer, serverKexInit.MACsClientServer) if err != nil { return }
result.r.MAC, err = findCommon("server to client MAC", clientKexInit.MACsServerClient, serverKexInit.MACsServerClient) if err != nil { return }
result.w.Compression, err = findCommon("client to server compression", clientKexInit.CompressionClientServer, serverKexInit.CompressionClientServer) if err != nil { return }
result.r.Compression, err = findCommon("server to client compression", clientKexInit.CompressionServerClient, serverKexInit.CompressionServerClient) if err != nil { return }
return result, nil }
// If rekeythreshold is too small, we can't make any progress sending
// stuff.
const minRekeyThreshold uint64 = 256
// Config contains configuration data common to both ServerConfig and
// ClientConfig.
type Config struct { // Rand provides the source of entropy for cryptographic
// primitives. If Rand is nil, the cryptographic random reader
// in package crypto/rand will be used.
Rand io.Reader
// The maximum number of bytes sent or received after which a
// new key is negotiated. It must be at least 256. If
// unspecified, a size suitable for the chosen cipher is used.
RekeyThreshold uint64
// The allowed key exchanges algorithms. If unspecified then a
// default set of algorithms is used.
KeyExchanges []string
// The allowed cipher algorithms. If unspecified then a sensible
// default is used.
Ciphers []string
// The allowed MAC algorithms. If unspecified then a sensible default
// is used.
MACs []string }
// SetDefaults sets sensible values for unset fields in config. This is
// exported for testing: Configs passed to SSH functions are copied and have
// default values set automatically.
func (c *Config) SetDefaults() { if c.Rand == nil { c.Rand = rand.Reader } if c.Ciphers == nil { c.Ciphers = supportedCiphers } var ciphers []string for _, c := range c.Ciphers { if cipherModes[c] != nil { // reject the cipher if we have no cipherModes definition
ciphers = append(ciphers, c) } } c.Ciphers = ciphers
if c.KeyExchanges == nil { c.KeyExchanges = supportedKexAlgos }
if c.MACs == nil { c.MACs = supportedMACs }
if c.RekeyThreshold == 0 { // cipher specific default
} else if c.RekeyThreshold < minRekeyThreshold { c.RekeyThreshold = minRekeyThreshold } else if c.RekeyThreshold >= math.MaxInt64 { // Avoid weirdness if somebody uses -1 as a threshold.
c.RekeyThreshold = math.MaxInt64 } }
// buildDataSignedForAuth returns the data that is signed in order to prove
// possession of a private key. See RFC 4252, section 7.
func buildDataSignedForAuth(sessionID []byte, req userAuthRequestMsg, algo, pubKey []byte) []byte { data := struct { Session []byte Type byte User string Service string Method string Sign bool Algo []byte PubKey []byte }{ sessionID, msgUserAuthRequest, req.User, req.Service, req.Method, true, algo, pubKey, } return Marshal(data) }
func appendU16(buf []byte, n uint16) []byte { return append(buf, byte(n>>8), byte(n)) }
func appendU32(buf []byte, n uint32) []byte { return append(buf, byte(n>>24), byte(n>>16), byte(n>>8), byte(n)) }
func appendU64(buf []byte, n uint64) []byte { return append(buf, byte(n>>56), byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n)) }
func appendInt(buf []byte, n int) []byte { return appendU32(buf, uint32(n)) }
func appendString(buf []byte, s string) []byte { buf = appendU32(buf, uint32(len(s))) buf = append(buf, s...) return buf }
func appendBool(buf []byte, b bool) []byte { if b { return append(buf, 1) } return append(buf, 0) }
// newCond is a helper to hide the fact that there is no usable zero
// value for sync.Cond.
func newCond() *sync.Cond { return sync.NewCond(new(sync.Mutex)) }
// window represents the buffer available to clients
// wishing to write to a channel.
type window struct { *sync.Cond win uint32 // RFC 4254 5.2 says the window size can grow to 2^32-1
writeWaiters int closed bool }
// add adds win to the amount of window available
// for consumers.
func (w *window) add(win uint32) bool { // a zero sized window adjust is a noop.
if win == 0 { return true } w.L.Lock() if w.win+win < win { w.L.Unlock() return false } w.win += win // It is unusual that multiple goroutines would be attempting to reserve
// window space, but not guaranteed. Use broadcast to notify all waiters
// that additional window is available.
w.Broadcast() w.L.Unlock() return true }
// close sets the window to closed, so all reservations fail
// immediately.
func (w *window) close() { w.L.Lock() w.closed = true w.Broadcast() w.L.Unlock() }
// reserve reserves win from the available window capacity.
// If no capacity remains, reserve will block. reserve may
// return less than requested.
func (w *window) reserve(win uint32) (uint32, error) { var err error w.L.Lock() w.writeWaiters++ w.Broadcast() for w.win == 0 && !w.closed { w.Wait() } w.writeWaiters-- if w.win < win { win = w.win } w.win -= win if w.closed { err = io.EOF } w.L.Unlock() return win, err }
// waitWriterBlocked waits until some goroutine is blocked for further
// writes. It is used in tests only.
func (w *window) waitWriterBlocked() { w.Cond.L.Lock() for w.writeWaiters == 0 { w.Cond.Wait() } w.Cond.L.Unlock() }
|