|
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tea implements the TEA algorithm, as defined in Needham and
// Wheeler's 1994 technical report, “TEA, a Tiny Encryption Algorithm”. See
// http://www.cix.co.uk/~klockstone/tea.pdf for details.
package tea
import ( "crypto/cipher" "encoding/binary" "errors" )
const ( // BlockSize is the size of a TEA block, in bytes.
BlockSize = 8
// KeySize is the size of a TEA key, in bytes.
KeySize = 16
// delta is the TEA key schedule constant.
delta = 0x9e3779b9
// numRounds is the standard number of rounds in TEA.
numRounds = 64 )
// tea is an instance of the TEA cipher with a particular key.
type tea struct { key [16]byte rounds int }
// NewCipher returns an instance of the TEA cipher with the standard number of
// rounds. The key argument must be 16 bytes long.
func NewCipher(key []byte) (cipher.Block, error) { return NewCipherWithRounds(key, numRounds) }
// NewCipherWithRounds returns an instance of the TEA cipher with a given
// number of rounds, which must be even. The key argument must be 16 bytes
// long.
func NewCipherWithRounds(key []byte, rounds int) (cipher.Block, error) { if len(key) != 16 { return nil, errors.New("tea: incorrect key size") }
if rounds&1 != 0 { return nil, errors.New("tea: odd number of rounds specified") }
c := &tea{ rounds: rounds, } copy(c.key[:], key)
return c, nil }
// BlockSize returns the TEA block size, which is eight bytes. It is necessary
// to satisfy the Block interface in the package "crypto/cipher".
func (*tea) BlockSize() int { return BlockSize }
// Encrypt encrypts the 8 byte buffer src using the key in t and stores the
// result in dst. Note that for amounts of data larger than a block, it is not
// safe to just call Encrypt on successive blocks; instead, use an encryption
// mode like CBC (see crypto/cipher/cbc.go).
func (t *tea) Encrypt(dst, src []byte) { e := binary.BigEndian v0, v1 := e.Uint32(src), e.Uint32(src[4:]) k0, k1, k2, k3 := e.Uint32(t.key[0:]), e.Uint32(t.key[4:]), e.Uint32(t.key[8:]), e.Uint32(t.key[12:])
sum := uint32(0) delta := uint32(delta)
for i := 0; i < t.rounds/2; i++ { sum += delta v0 += ((v1 << 4) + k0) ^ (v1 + sum) ^ ((v1 >> 5) + k1) v1 += ((v0 << 4) + k2) ^ (v0 + sum) ^ ((v0 >> 5) + k3) }
e.PutUint32(dst, v0) e.PutUint32(dst[4:], v1) }
// Decrypt decrypts the 8 byte buffer src using the key in t and stores the
// result in dst.
func (t *tea) Decrypt(dst, src []byte) { e := binary.BigEndian v0, v1 := e.Uint32(src), e.Uint32(src[4:]) k0, k1, k2, k3 := e.Uint32(t.key[0:]), e.Uint32(t.key[4:]), e.Uint32(t.key[8:]), e.Uint32(t.key[12:])
delta := uint32(delta) sum := delta * uint32(t.rounds/2) // in general, sum = delta * n
for i := 0; i < t.rounds/2; i++ { v1 -= ((v0 << 4) + k2) ^ (v0 + sum) ^ ((v0 >> 5) + k3) v0 -= ((v1 << 4) + k0) ^ (v1 + sum) ^ ((v1 >> 5) + k1) sum -= delta }
e.PutUint32(dst, v0) e.PutUint32(dst[4:], v1) }
|