|
|
package ringct
//import "fmt"
const ATOMS = 64 // 64 bit in the amount field
type bits64 [ATOMS]bool
// implementation of d2b from rctTypes.cpp
// lays out the number from lowest bit at pos 0 and highest at bit 63
func d2b_uint64_to_bits(amount uint64)(bits64){ var bits bits64 for i := 0; amount != 0; i++ { if (amount&1) == 1 { bits[i] = true } amount = amount >> 1 } return bits }
//ProveRange and VerifyRange
//ProveRange gives C, and mask such that \sumCi = C
// c.f. http://eprint.iacr.org/2015/1098 section 5.1
// and Ci is a commitment to either 0 or 2^i, i=0,...,63
// thus this proves that "amount" is in [0, 2^64]
// mask is a such that C = aG + bH, and b = amount
//VerifyRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
// this function proves a range using Pedersen commitment and borromean signatures
// implemented in cryptonote rctSigs.cpp
func ProveRange (C *Key, mask *Key, amount uint64) ( *RangeSig){ Sc_0(mask) copy(C[:], (*identity())[:]) // set C to identity
var ai Key64 var Cih Key64 var sig RangeSig bits := d2b_uint64_to_bits(amount) //fmt.Printf("bits %+v\n", bits)
for i := 0; i < ATOMS;i++{ ai[i] = *(RandomScalar()) // grab a random key
// Sc_0(&ai[i]); // make random key zero for tesing puprpose // BUG if line is uncommented
ScReduce32(&ai[i]) // reduce it
// fmt.Printf("ai[%2d] %x\n",i, ai[i])
sig.ci[i] = ScalarmultBase(ai[i]) // fmt.Printf("ci[%2d] %x\n",i, sig.ci[i])
if bits[i] { AddKeys(&sig.ci[i],&sig.ci[i],&H2[i]) } SubKeys(&Cih[i],&sig.ci[i],&H2[i]) ScAdd(mask,mask,&ai[i]) AddKeys(C,C,&sig.ci[i]) } //fmt.Print("C %x\n", *C)
// TODO caculate Borromean signature here
sig.asig = GenerateBorromean(ai, sig.ci, Cih, bits); return &sig }
func VerifyRange(c *Key, as RangeSig) bool { var CiH Key64 tmp := identity() for i := 0; i < 64; i++ { SubKeys(&CiH[i], &as.ci[i], &H2[i]) AddKeys(tmp, tmp, &as.ci[i]) } // fmt.Printf("C %x\n", *c)
// fmt.Printf("tmp %x\n", *tmp)
if *c != *tmp { return false } //return true
return VerifyBorromean(&as.asig, &as.ci, &CiH) }
//Borromean (c.f. gmax/andytoshi's paper)
func GenerateBorromean(x Key64, P1 Key64, P2 Key64, indices bits64) (BoroSig){ var bb BoroSig var alpha Key64 var L [2]Key64 var c Key var data_bytes []byte for ii := 0; ii < ATOMS;ii++{ var naught,prime int if indices[ii]{ naught = 1 }else{ naught = 0 } prime = (naught+1)%2 // basically it is the inverse of naught
alpha[ii] = skGen() // generate a new random scalar
L[naught][ii] = ScalarmultBase(alpha[ii]) if naught == 0 { bb.s1[ii] = skGen() c = *(HashToScalar(L[naught][ii][:])) AddKeys2(&L[prime][ii], &bb.s1[ii], &c, &P2[ii]) } // original cryptonote does NOT clear out some unset bytes, verify whether it may be a problem for them
data_bytes = append(data_bytes, L[1][ii][:]...) } // take the hash of the L1 keys all 64 of them
// we have been collecting them above
bb.ee = *(HashToScalar(data_bytes)); // fmt.Printf("bb.ee %x\n", bb.ee)
var LL, cc Key for jj := 0 ; jj < ATOMS;jj++{ if indices[jj] == false { ScMulSub(&bb.s0[jj], &x[jj], &bb.ee, &alpha[jj]) }else{ bb.s0[jj] = skGen() AddKeys2(&LL, &bb.s0[jj], &bb.ee, &P1[jj]) cc = *(HashToScalar(LL[:])) ScMulSub(&bb.s1[jj], &x[jj], &cc, &alpha[jj]) } } return bb }
// Verify the Borromean sig
func VerifyBorromean(b *BoroSig, p1, p2 *Key64) bool { var data []byte tmp, tmp2 := new(Key), new(Key) for i := 0; i < 64; i++ { AddKeys2(tmp, &b.s0[i], &b.ee, &p1[i]) tmp3 := HashToScalar(tmp[:]) AddKeys2(tmp2, &b.s1[i], tmp3, &p2[i]) data = append(data, tmp2[:]...) } computed := HashToScalar(data) // fmt.Printf("comp %x\n", computed)
return *computed == b.ee }
|