// Copyright 2017-2018 DERO Project. All rights reserved. // Use of this source code in any form is governed by RESEARCH license. // license can be found in the LICENSE file. // GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8 // // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package ringct import "io" import "fmt" import "github.com/arnaucode/derosuite/crypto" // enable debuggin mode within ringct // if true debugging mode enabled const DEBUGGING_MODE = false // TODO this package need serious love of atleast few weeks // but atleast the parser and serdes works // we neeed to expand everthing so as chances of a bug slippping in becomes very low // NOTE:DO NOT waste time implmenting pre-RCT code const ( RCTTypeNull = iota RCTTypeFull RCTTypeSimple ) // Pedersen Commitment is generated from this struct // C = aG + bH where a = mask and b = amount // senderPk is the one-time public key for ECDH exchange type ECdhTuple struct { Mask Key `msgpack:"M"` Amount Key `msgpack:"A"` // senderPk Key } // Range proof commitments type Key64 [64]Key // Range Signature // Essentially data for a Borromean Signature type RangeSig struct { asig BoroSig ci Key64 } // Borromean Signature type BoroSig struct { s0 Key64 s1 Key64 ee Key } // MLSAG (Multilayered Linkable Spontaneous Anonymous Group) Signature type MlsagSig struct { ss [][]Key cc Key // this stores the starting point II []Key // this stores the keyimage, but is taken from the tx,it is NOT serialized } // Confidential Transaction Keys, mask is Pedersen Commitment // most of the time, it holds public keys, except (transaction making ) where it holds private keys type CtKey struct { Destination Key `msgpack:"D"` // this is the destination and needs to expanded from blockchain Mask Key `msgpack:"M"` // this is the public key amount/commitment homomorphic mask } // Ring Confidential Signature parts that we have to keep type RctSigBase struct { sigType uint8 Message Key // transaction prefix hash MixRing [][]CtKey // this is not serialized pseudoOuts []Key ECdhInfo []ECdhTuple OutPk []CtKey // only mask amount is serialized txFee uint64 Txid crypto.Hash // this field is extra and only used for logging purposes to track which txid was at fault } // Ring Confidential Signature parts that we can just prune later type RctSigPrunable struct { rangeSigs []RangeSig MlsagSigs []MlsagSig // there can be as many mlsagsigs as many vins } // Ring Confidential Signature struct that can verify everything type RctSig struct { RctSigBase RctSigPrunable } func (k *Key64) Serialize() (result []byte) { for _, key := range k { result = append(result, key[:]...) } return } func (b *BoroSig) Serialize() (result []byte) { result = append(b.s0.Serialize(), b.s1.Serialize()...) result = append(result, b.ee[:]...) return } func (r *RangeSig) Serialize() (result []byte) { result = append(r.asig.Serialize(), r.ci.Serialize()...) return } func (m *MlsagSig) Serialize() (result []byte) { for i := 0; i < len(m.ss); i++ { for j := 0; j < len(m.ss[i]); j++ { result = append(result, m.ss[i][j][:]...) } } result = append(result, m.cc[:]...) return } func (r *RctSigBase) SerializeBase() (result []byte) { result = []byte{r.sigType} // Null type returns right away if r.sigType == RCTTypeNull { return } result = append(result, Uint64ToBytes(r.txFee)...) if r.sigType == RCTTypeSimple { for _, input := range r.pseudoOuts { result = append(result, input[:]...) } } for _, ecdh := range r.ECdhInfo { result = append(result, ecdh.Mask[:]...) result = append(result, ecdh.Amount[:]...) } for _, ctKey := range r.OutPk { result = append(result, ctKey.Mask[:]...) } return } func (r *RctSigBase) BaseHash() (result crypto.Hash) { result = crypto.Keccak256(r.SerializeBase()) return } func (r *RctSig) SerializePrunable() (result []byte) { if r.sigType == RCTTypeNull { return } for _, rangeSig := range r.rangeSigs { result = append(result, rangeSig.Serialize()...) } for _, mlsagSig := range r.MlsagSigs { result = append(result, mlsagSig.Serialize()...) } return } func (r *RctSig) Get_Sig_Type() byte { return r.sigType } func (r *RctSig) Get_TX_Fee() (result uint64) { if r.sigType == RCTTypeNull { panic("RCTTypeNull cannot have TX fee") } return r.txFee } func (r *RctSig) PrunableHash() (result crypto.Hash) { if r.sigType == RCTTypeNull { return } result = crypto.Keccak256(r.SerializePrunable()) return } // this is the function which should be used by external world // if any exceptions occur while handling, we simply return false // transaction must be expanded before verification // coinbase transactions are always success, since they are tied to PoW of block func (r *RctSig) Verify() (result bool) { result = false defer func() { // safety so if anything wrong happens, verification fails if r := recover(); r != nil { //connection.logger.Fatalf("Recovered while Verify transaction", r) fmt.Printf("Recovered while Verify transaction") result = false } }() switch r.sigType { case RCTTypeNull: return true /// this is only possible for miner tx case RCTTypeFull: return r.VerifyRctFull() case RCTTypeSimple: return r.VerifyRctSimple() default: return false } // can never reach here // return false } // Verify a RCTTypeSimple RingCT Signature func (r *RctSig) VerifyRctSimple() bool { sumOutPks := identity() for _, ctKey := range r.OutPk { AddKeys(sumOutPks, sumOutPks, &ctKey.Mask) } //txFeeKey := ScalarMultH(d2h(r.txFee)) txFeeKey := Commitment_From_Amount(r.txFee) AddKeys(sumOutPks, sumOutPks, &txFeeKey) sumPseudoOuts := identity() for _, pseudoOut := range r.pseudoOuts { AddKeys(sumPseudoOuts, sumPseudoOuts, &pseudoOut) } if *sumPseudoOuts != *sumOutPks { return false } for i, ctKey := range r.OutPk { if !VerifyRange(&ctKey.Mask, r.rangeSigs[i]) { return false } } return r.VerifyRCTSimple_Core() } func (r *RctSig) VerifyRctFull() bool { for i, ctKey := range r.OutPk { if !VerifyRange(&ctKey.Mask, r.rangeSigs[i]) { return false } } return r.VerifyRCTFull_Core() } func ParseCtKey(buf io.Reader) (result CtKey, err error) { if result.Mask, err = ParseKey(buf); err != nil { return } return } func ParseKey64(buf io.Reader) (result Key64, err error) { for i := 0; i < 64; i++ { if result[i], err = ParseKey(buf); err != nil { return } } return } // parse Borromean signature func ParseBoroSig(buf io.Reader) (result BoroSig, err error) { if result.s0, err = ParseKey64(buf); err != nil { return } if result.s1, err = ParseKey64(buf); err != nil { return } if result.ee, err = ParseKey(buf); err != nil { return } return } // range data consists of Single Borromean sig and 64 keys for 64 bits func ParseRangeSig(buf io.Reader) (result RangeSig, err error) { if result.asig, err = ParseBoroSig(buf); err != nil { return } if result.ci, err = ParseKey64(buf); err != nil { return } return } // parser for ringct signature // we need to be extra cautious as almost anything cam come as input func ParseRingCtSignature(buf io.Reader, nInputs, nOutputs, nMixin int) (result *RctSig, err error) { r := new(RctSig) sigType := make([]byte, 1) _, err = buf.Read(sigType) if err != nil { return } r.sigType = uint8(sigType[0]) if r.sigType == RCTTypeNull { result = r return } /* This triggers go vet saying suspect OR if (r.sigType != RCTTypeFull) || (r.sigType != RCTTypeSimple) { err = fmt.Errorf("Bad signature Type %d", r.sigType) return }*/ switch r.sigType { case RCTTypeFull: case RCTTypeSimple: default: err = fmt.Errorf("Bad signature Type %d", r.sigType) return } r.txFee, err = ReadVarInt(buf) if err != nil { return } var nMg, nSS int if r.sigType == RCTTypeSimple { nMg = nInputs nSS = 2 r.pseudoOuts = make([]Key, nInputs) for i := 0; i < nInputs; i++ { if r.pseudoOuts[i], err = ParseKey(buf); err != nil { return } } } else { nMg = 1 nSS = nInputs + 1 } r.ECdhInfo = make([]ECdhTuple, nOutputs) for i := 0; i < nOutputs; i++ { if r.ECdhInfo[i].Mask, err = ParseKey(buf); err != nil { return } if r.ECdhInfo[i].Amount, err = ParseKey(buf); err != nil { return } } r.OutPk = make([]CtKey, nOutputs) for i := 0; i < nOutputs; i++ { if r.OutPk[i], err = ParseCtKey(buf); err != nil { return } } r.rangeSigs = make([]RangeSig, nOutputs) for i := 0; i < nOutputs; i++ { if r.rangeSigs[i], err = ParseRangeSig(buf); err != nil { return } } r.MlsagSigs = make([]MlsagSig, nMg) for i := 0; i < nMg; i++ { r.MlsagSigs[i].ss = make([][]Key, nMixin+1) for j := 0; j < nMixin+1; j++ { r.MlsagSigs[i].ss[j] = make([]Key, nSS) for k := 0; k < nSS; k++ { if r.MlsagSigs[i].ss[j][k], err = ParseKey(buf); err != nil { return } } } if r.MlsagSigs[i].cc, err = ParseKey(buf); err != nil { return } } result = r return } /* //Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a // where C= aG + bH void ecdhEncode(ecdhTuple & unmasked, const key & sharedSec) { key sharedSec1 = hash_to_scalar(sharedSec); key sharedSec2 = hash_to_scalar(sharedSec1); //encode sc_add(unmasked.mask.bytes, unmasked.mask.bytes, sharedSec1.bytes); sc_add(unmasked.amount.bytes, unmasked.amount.bytes, sharedSec2.bytes); } void ecdhDecode(ecdhTuple & masked, const key & sharedSec) { key sharedSec1 = hash_to_scalar(sharedSec); key sharedSec2 = hash_to_scalar(sharedSec1); //decode sc_sub(masked.mask.bytes, masked.mask.bytes, sharedSec1.bytes); sc_sub(masked.amount.bytes, masked.amount.bytes, sharedSec2.bytes); } */ func ecdhEncode(tuple *ECdhTuple, shared_secret Key) { shared_secret1 := HashToScalar(shared_secret[:]) shared_secret2 := HashToScalar(shared_secret1[:]) // encode ScAdd(&tuple.Mask, &tuple.Mask, shared_secret1) ScAdd(&tuple.Amount, &tuple.Amount, shared_secret2) } func ecdhDecode(tuple *ECdhTuple, shared_secret Key) { shared_secret1 := HashToScalar(shared_secret[:]) shared_secret2 := HashToScalar(shared_secret1[:]) // encode ScSub(&tuple.Mask, &tuple.Mask, shared_secret1) ScSub(&tuple.Amount, &tuple.Amount, shared_secret2) } // decode and verify a previously encrypted tuple // the keys come in from the wallet // tuple is the encoded data // skey is the secret scalar key // outpk is public key used to verify whether the decode was sucessfull func Decode_Amount(tuple ECdhTuple, skey Key, outpk Key) (amount uint64, mask Key, result bool) { var Ctmp Key ecdhDecode(&tuple, skey) // decode the amounts // saniity check similiar to original one // addKeys2(Ctmp, mask, amount, H); AddKeys2(&Ctmp, &tuple.Mask, &tuple.Amount, &H) if Ctmp != outpk { fmt.Printf("warning, amount decoded incorrectly, will be unable to spend") result = false return } amount = h2d(tuple.Amount) mask = tuple.Mask result = true return }