package ringct import "io" import "crypto/rand" import "github.com/deroproject/derosuite/crypto" const KeyLength = 32 // Key can be a Scalar or a Point type Key [KeyLength]byte func (p *Key) FromBytes(b [KeyLength]byte) { *p = b } func (p *Key) ToBytes() (result [KeyLength]byte) { result = [KeyLength]byte(*p) return } func (p *Key) PubKey() (pubKey *Key) { point := new(ExtendedGroupElement) GeScalarMultBase(point, p) pubKey = new(Key) point.ToBytes(pubKey) return } // Creates a point on the Edwards Curve by hashing the key func (p *Key) HashToEC() (result *ExtendedGroupElement) { result = new(ExtendedGroupElement) var p1 ProjectiveGroupElement var p2 CompletedGroupElement h := Key(crypto.Keccak256(p[:])) p1.FromBytes(&h) GeMul8(&p2, &p1) p2.ToExtended(result) return } func RandomScalar() (result *Key) { result = new(Key) var reduceFrom [KeyLength * 2]byte tmp := make([]byte, KeyLength*2) rand.Read(tmp) copy(reduceFrom[:], tmp) ScReduce(result, &reduceFrom) return } func NewKeyPair() (privKey *Key, pubKey *Key) { privKey = RandomScalar() pubKey = privKey.PubKey() return } func ParseKey(buf io.Reader) (result Key, err error) { key := make([]byte, KeyLength) if _, err = buf.Read(key); err != nil { return } copy(result[:], key) return } /* //does a * G where a is a scalar and G is the curve basepoint key scalarmultBase(const key & a) { ge_p3 point; key aG; sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand ge_scalarmult_base(&point, aG.bytes); ge_p3_tobytes(aG.bytes, &point); return aG; } */ //does a * G where a is a scalar and G is the curve basepoint func ScalarmultBase(a Key) (aG Key){ reduce32copy := a ScReduce32(&reduce32copy) point := new(ExtendedGroupElement) GeScalarMultBase(point, &a) point.ToBytes(&aG) return aG } // generates a key which can be used as private key or mask // this function is similiar to RandomScalar except for reduce32, TODO can we merge both func skGen() Key { skey := RandomScalar() ScReduce32(skey) return *skey } func (k *Key) ToExtended() (result *ExtendedGroupElement) { result = new(ExtendedGroupElement) result.FromBytes(k) return } func identity() (result *Key) { result = new(Key) result[0] = 1 return } // convert a uint64 to a scalar func d2h(val uint64) (result *Key) { result = new(Key) for i := 0; val > 0; i++ { result[i] = byte(val & 0xFF) val /= 256 } return } func HashToScalar(data ...[]byte) (result *Key) { result = new(Key) *result = Key(crypto.Keccak256(data...)) ScReduce32(result) return } // multiply a scalar by H (second curve point of Pedersen Commitment) func ScalarMultH(scalar *Key) (result *Key) { h := new(ExtendedGroupElement) h.FromBytes(&H) resultPoint := new(ProjectiveGroupElement) GeScalarMult(resultPoint, scalar, h) result = new(Key) resultPoint.ToBytes(result) return } // add two points together func AddKeys(sum, k1, k2 *Key) { a := k1.ToExtended() b := new(CachedGroupElement) k2.ToExtended().ToCached(b) c := new(CompletedGroupElement) geAdd(c, a, b) tmp := new(ExtendedGroupElement) c.ToExtended(tmp) tmp.ToBytes(sum) return } // compute a*G + b*B func AddKeys2(result, a, b, B *Key) { BPoint := B.ToExtended() RPoint := new(ProjectiveGroupElement) GeDoubleScalarMultVartime(RPoint, b, BPoint, a) RPoint.ToBytes(result) return } // subtract two points A - B func SubKeys(diff, k1, k2 *Key) { a := k1.ToExtended() b := new(CachedGroupElement) k2.ToExtended().ToCached(b) c := new(CompletedGroupElement) geSub(c, a, b) tmp := new(ExtendedGroupElement) c.ToExtended(tmp) tmp.ToBytes(diff) return }