package ringct import "io" import "fmt" import "github.com/deroproject/derosuite/crypto" // TODO this package need serious love of atleast few weeks // but atleast the parser and serdes works // we neeed to expand everthing so as chances of a bug slippping in becomes very low // NOTE:DO NOT waste time implmenting pre-RCT code const ( RCTTypeNull = iota RCTTypeFull RCTTypeSimple ) // Pedersen Commitment is generated from this struct // C = aG + bH where a = mask and b = amount // senderPk is the one-time public key for ECDH exchange type ecdhTuple struct { mask Key amount Key senderPk Key } // Range proof commitments type Key64 [64]Key // Range Signature // Essentially data for a Borromean Signature type RangeSig struct { asig BoroSig ci Key64 } // Borromean Signature type BoroSig struct { s0 Key64 s1 Key64 ee Key } // MLSAG (Multilayered Linkable Spontaneous Anonymous Group) Signature type MlsagSig struct { ss [][]Key cc Key // this stores the starting point II []Key // this stores the keyimage, but is taken from the tx,it is NOT serialized } // Confidential Transaction Keys, mask is Pedersen Commitment // most of the time, it holds public keys, except where it holds private keys type CtKey struct { Destination Key // this is the destination and needs to expanded from blockchain Mask Key // this is the public key mask } // Ring Confidential Signature parts that we have to keep type RctSigBase struct { sigType uint8 Message Key // transaction prefix hash MixRing [][]CtKey // this is not serialized pseudoOuts []Key ecdhInfo []ecdhTuple outPk []CtKey // only mask amount is serialized txFee uint64 Txid crypto.Hash // this field is extra and only used for logging purposes to track which txid was at fault } // Ring Confidential Signature parts that we can just prune later type RctSigPrunable struct { rangeSigs []RangeSig MlsagSigs []MlsagSig } // Ring Confidential Signature struct that can verify everything type RctSig struct { RctSigBase RctSigPrunable } func (k *Key64) Serialize() (result []byte) { for _, key := range k { result = append(result, key[:]...) } return } func (b *BoroSig) Serialize() (result []byte) { result = append(b.s0.Serialize(), b.s1.Serialize()...) result = append(result, b.ee[:]...) return } func (r *RangeSig) Serialize() (result []byte) { result = append(r.asig.Serialize(), r.ci.Serialize()...) return } func (m *MlsagSig) Serialize() (result []byte) { for i := 0; i < len(m.ss); i++ { for j := 0; j < len(m.ss[i]); j++ { result = append(result, m.ss[i][j][:]...) } } result = append(result, m.cc[:]...) return } func (r *RctSigBase) SerializeBase() (result []byte) { result = []byte{r.sigType} // Null type returns right away if r.sigType == RCTTypeNull { return } result = append(result, Uint64ToBytes(r.txFee)...) if r.sigType == RCTTypeSimple { for _, input := range r.pseudoOuts { result = append(result, input[:]...) } } for _, ecdh := range r.ecdhInfo { result = append(result, ecdh.mask[:]...) result = append(result, ecdh.amount[:]...) } for _, ctKey := range r.outPk { result = append(result, ctKey.Mask[:]...) } return } func (r *RctSigBase) BaseHash() (result crypto.Hash) { result = crypto.Keccak256(r.SerializeBase()) return } func (r *RctSig) SerializePrunable() (result []byte) { if r.sigType == RCTTypeNull { return } for _, rangeSig := range r.rangeSigs { result = append(result, rangeSig.Serialize()...) } for _, mlsagSig := range r.MlsagSigs { result = append(result, mlsagSig.Serialize()...) } return } func (r *RctSig) Get_Sig_Type() (byte) { return r.sigType } func (r *RctSig) Get_TX_Fee() (result uint64) { if r.sigType == RCTTypeNull { panic("RCTTypeNull cannot have TX fee") } return r.txFee } func (r *RctSig) PrunableHash() (result crypto.Hash) { if r.sigType == RCTTypeNull { return } result = crypto.Keccak256(r.SerializePrunable()) return } // this is the function which should be used by external world func (r *RctSig) Verify() (result bool) { result = false defer func() { // safety so if anything wrong happens, verification fails if r := recover(); r != nil { //connection.logger.Fatalf("Recovered while Verify transaction", r) fmt.Printf("Recovered while Verify transaction") result = false }}() switch r.sigType { case RCTTypeNull: return true /// this is only possible for miner tx case RCTTypeFull : return r.VerifyRctFull() case RCTTypeSimple: return r.VerifyRctSimple() default : return false } return false } // Verify a RCTTypeSimple RingCT Signature func (r *RctSig) VerifyRctSimple() bool { sumOutPks := identity() for _, ctKey := range r.outPk { AddKeys(sumOutPks, sumOutPks, &ctKey.Mask) } txFeeKey := ScalarMultH(d2h(r.txFee)) AddKeys(sumOutPks, sumOutPks, txFeeKey) sumPseudoOuts := identity() for _, pseudoOut := range r.pseudoOuts { AddKeys(sumPseudoOuts, sumPseudoOuts, &pseudoOut) } if *sumPseudoOuts != *sumOutPks { return false } for i, ctKey := range r.outPk { if !VerifyRange(&ctKey.Mask, r.rangeSigs[i]) { return false } } // BUG BUG we are not verifying mlsag here, Do it once the core finishes return true } func (r *RctSig) VerifyRctFull() bool { for i, ctKey := range r.outPk { if !VerifyRange(&ctKey.Mask, r.rangeSigs[i]) { return false } } // BUG BUG we are not verifying mlsag here, Do it once the core is finished return true } func ParseCtKey(buf io.Reader) (result CtKey, err error) { if result.Mask, err = ParseKey(buf); err != nil { return } return } func ParseKey64(buf io.Reader) (result Key64, err error) { for i := 0; i < 64; i++ { if result[i], err = ParseKey(buf); err != nil { return } } return } // parse Borromean signature func ParseBoroSig(buf io.Reader) (result BoroSig, err error) { if result.s0, err = ParseKey64(buf); err != nil { return } if result.s1, err = ParseKey64(buf); err != nil { return } if result.ee, err = ParseKey(buf); err != nil { return } return } // range data consists of Single Borromean sig and 64 keys for 64 bits func ParseRangeSig(buf io.Reader) (result RangeSig, err error) { if result.asig, err = ParseBoroSig(buf); err != nil { return } if result.ci, err = ParseKey64(buf); err != nil { return } return } // parser for ringct signature // we need to be extra cautious as almost anything cam come as input func ParseRingCtSignature(buf io.Reader, nInputs, nOutputs, nMixin int) (result *RctSig, err error) { r := new(RctSig) sigType := make([]byte, 1) _, err = buf.Read(sigType) if err != nil { return } r.sigType = uint8(sigType[0]) if r.sigType == RCTTypeNull { result = r return } if r.sigType != RCTTypeFull || r.sigType != RCTTypeSimple { err = fmt.Errorf("Bad signature Type %d", r.sigType) } r.txFee, err = ReadVarInt(buf) if err != nil { return } var nMg, nSS int if r.sigType == RCTTypeSimple { nMg = nInputs nSS = 2 r.pseudoOuts = make([]Key, nInputs) for i := 0; i < nInputs; i++ { if r.pseudoOuts[i], err = ParseKey(buf); err != nil { return } } } else { nMg = 1 nSS = nInputs + 1 } r.ecdhInfo = make([]ecdhTuple, nOutputs) for i := 0; i < nOutputs; i++ { if r.ecdhInfo[i].mask, err = ParseKey(buf); err != nil { return } if r.ecdhInfo[i].amount, err = ParseKey(buf); err != nil { return } } r.outPk = make([]CtKey, nOutputs) for i := 0; i < nOutputs; i++ { if r.outPk[i], err = ParseCtKey(buf); err != nil { return } } r.rangeSigs = make([]RangeSig, nOutputs) for i := 0; i < nOutputs; i++ { if r.rangeSigs[i], err = ParseRangeSig(buf); err != nil { return } } r.MlsagSigs = make([]MlsagSig, nMg) for i := 0; i < nMg; i++ { r.MlsagSigs[i].ss = make([][]Key, nMixin+1) for j := 0; j < nMixin+1; j++ { r.MlsagSigs[i].ss[j] = make([]Key, nSS) for k := 0; k < nSS; k++ { if r.MlsagSigs[i].ss[j][k], err = ParseKey(buf); err != nil { return } } } if r.MlsagSigs[i].cc, err = ParseKey(buf); err != nil { return } } result = r return }