// Copyright 2017-2018 DERO Project. All rights reserved.
|
|
// Use of this source code in any form is governed by RESEARCH license.
|
|
// license can be found in the LICENSE file.
|
|
// GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8
|
|
//
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
package ringct
|
|
|
|
import "io"
|
|
import "fmt"
|
|
import "crypto/rand"
|
|
|
|
import "github.com/deroproject/derosuite/crypto"
|
|
|
|
const KeyLength = 32
|
|
|
|
// Key can be a Scalar or a Point
|
|
type Key [KeyLength]byte
|
|
|
|
func (k Key) MarshalText() ([]byte, error) {
|
|
return []byte(fmt.Sprintf("%x", k[:])), nil
|
|
}
|
|
|
|
func (k Key) String() string {
|
|
return fmt.Sprintf("%x", k[:])
|
|
}
|
|
|
|
func (p *Key) FromBytes(b [KeyLength]byte) {
|
|
*p = b
|
|
}
|
|
|
|
func (p *Key) ToBytes() (result [KeyLength]byte) {
|
|
result = [KeyLength]byte(*p)
|
|
return
|
|
}
|
|
|
|
func (p *Key) PubKey() (pubKey *Key) {
|
|
point := new(ExtendedGroupElement)
|
|
GeScalarMultBase(point, p)
|
|
pubKey = new(Key)
|
|
point.ToBytes(pubKey)
|
|
return
|
|
}
|
|
|
|
// Creates a point on the Edwards Curve by hashing the key
|
|
func (p *Key) HashToEC() (result *ExtendedGroupElement) {
|
|
result = new(ExtendedGroupElement)
|
|
var p1 ProjectiveGroupElement
|
|
var p2 CompletedGroupElement
|
|
h := Key(crypto.Keccak256(p[:]))
|
|
p1.FromBytes(&h)
|
|
GeMul8(&p2, &p1)
|
|
p2.ToExtended(result)
|
|
return
|
|
}
|
|
|
|
func (p *Key) HashToPoint() (result Key) {
|
|
extended := p.HashToEC()
|
|
extended.ToBytes(&result)
|
|
return
|
|
}
|
|
func RandomScalar() (result *Key) {
|
|
result = new(Key)
|
|
var reduceFrom [KeyLength * 2]byte
|
|
tmp := make([]byte, KeyLength*2)
|
|
rand.Read(tmp)
|
|
copy(reduceFrom[:], tmp)
|
|
ScReduce(result, &reduceFrom)
|
|
return
|
|
}
|
|
|
|
func NewKeyPair() (privKey *Key, pubKey *Key) {
|
|
privKey = RandomScalar()
|
|
pubKey = privKey.PubKey()
|
|
return
|
|
}
|
|
|
|
func ParseKey(buf io.Reader) (result Key, err error) {
|
|
key := make([]byte, KeyLength)
|
|
if _, err = buf.Read(key); err != nil {
|
|
return
|
|
}
|
|
copy(result[:], key)
|
|
return
|
|
}
|
|
|
|
/*
|
|
//does a * G where a is a scalar and G is the curve basepoint
|
|
key scalarmultBase(const key & a) {
|
|
ge_p3 point;
|
|
key aG;
|
|
sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand
|
|
ge_scalarmult_base(&point, aG.bytes);
|
|
ge_p3_tobytes(aG.bytes, &point);
|
|
return aG;
|
|
}
|
|
*/
|
|
//does a * G where a is a scalar and G is the curve basepoint
|
|
|
|
func ScalarmultBase(a Key) (aG Key) {
|
|
reduce32copy := a
|
|
ScReduce32(&reduce32copy)
|
|
point := new(ExtendedGroupElement)
|
|
GeScalarMultBase(point, &a)
|
|
point.ToBytes(&aG)
|
|
return aG
|
|
}
|
|
|
|
// generates a key which can be used as private key or mask
|
|
// this function is similiar to RandomScalar except for reduce32, TODO can we merge both
|
|
func skGen() Key {
|
|
skey := RandomScalar()
|
|
ScReduce32(skey)
|
|
return *skey
|
|
}
|
|
|
|
func (k *Key) ToExtended() (result *ExtendedGroupElement) {
|
|
result = new(ExtendedGroupElement)
|
|
result.FromBytes(k)
|
|
return
|
|
}
|
|
|
|
// bothe the function resturn identity of the ed25519 curve
|
|
func identity() (result *Key) {
|
|
result = new(Key)
|
|
result[0] = 1
|
|
return
|
|
}
|
|
func CurveIdentity() (result Key) {
|
|
result = Identity
|
|
return result
|
|
}
|
|
|
|
func CurveOrder() (result Key) {
|
|
result = L
|
|
return result
|
|
}
|
|
|
|
// convert a uint64 to a scalar
|
|
func d2h(val uint64) (result *Key) {
|
|
result = new(Key)
|
|
for i := 0; val > 0; i++ {
|
|
result[i] = byte(val & 0xFF)
|
|
val /= 256
|
|
}
|
|
return
|
|
}
|
|
|
|
//32 byte key to uint long long
|
|
// if the key holds a value > 2^64
|
|
// then the value in the first 8 bytes is returned
|
|
func h2d(input Key) (value uint64) {
|
|
for j := 7; j >= 0; j-- {
|
|
value = (value*256 + uint64(input[j]))
|
|
}
|
|
return value
|
|
}
|
|
|
|
func HashToScalar(data ...[]byte) (result *Key) {
|
|
result = new(Key)
|
|
*result = Key(crypto.Keccak256(data...))
|
|
ScReduce32(result)
|
|
return
|
|
}
|
|
|
|
// does a * P where a is a scalar and P is an arbitrary point
|
|
func ScalarMultKey(Point *Key, scalar *Key) (result *Key) {
|
|
P := new(ExtendedGroupElement)
|
|
P.FromBytes(Point)
|
|
resultPoint := new(ProjectiveGroupElement)
|
|
GeScalarMult(resultPoint, scalar, P)
|
|
result = new(Key)
|
|
resultPoint.ToBytes(result)
|
|
return
|
|
}
|
|
|
|
// multiply a scalar by H (second curve point of Pedersen Commitment)
|
|
func ScalarMultH(scalar *Key) (result *Key) {
|
|
h := new(ExtendedGroupElement)
|
|
h.FromBytes(&H)
|
|
resultPoint := new(ProjectiveGroupElement)
|
|
GeScalarMult(resultPoint, scalar, h)
|
|
result = new(Key)
|
|
resultPoint.ToBytes(result)
|
|
return
|
|
}
|
|
|
|
// add two points together
|
|
func AddKeys(sum, k1, k2 *Key) {
|
|
a := k1.ToExtended()
|
|
b := new(CachedGroupElement)
|
|
k2.ToExtended().ToCached(b)
|
|
c := new(CompletedGroupElement)
|
|
geAdd(c, a, b)
|
|
tmp := new(ExtendedGroupElement)
|
|
c.ToExtended(tmp)
|
|
tmp.ToBytes(sum)
|
|
return
|
|
}
|
|
|
|
// compute a*G + b*B
|
|
func AddKeys2(result, a, b, B *Key) {
|
|
BPoint := B.ToExtended()
|
|
RPoint := new(ProjectiveGroupElement)
|
|
GeDoubleScalarMultVartime(RPoint, b, BPoint, a)
|
|
RPoint.ToBytes(result)
|
|
return
|
|
}
|
|
|
|
//addKeys3
|
|
//aAbB = a*A + b*B where a, b are scalars, A, B are curve points
|
|
//B must be input after applying "precomp"
|
|
func AddKeys3(result *Key, a *Key, A *Key, b *Key, B_Precomputed *[8]CachedGroupElement) {
|
|
A_Point := new(ExtendedGroupElement)
|
|
A_Point.FromBytes(A)
|
|
|
|
result_projective := new(ProjectiveGroupElement)
|
|
GeDoubleScalarMultPrecompVartime(result_projective, a, A_Point, b, B_Precomputed)
|
|
result_projective.ToBytes(result)
|
|
|
|
}
|
|
|
|
// subtract two points A - B
|
|
func SubKeys(diff, k1, k2 *Key) {
|
|
a := k1.ToExtended()
|
|
b := new(CachedGroupElement)
|
|
k2.ToExtended().ToCached(b)
|
|
c := new(CompletedGroupElement)
|
|
geSub(c, a, b)
|
|
tmp := new(ExtendedGroupElement)
|
|
c.ToExtended(tmp)
|
|
tmp.ToBytes(diff)
|
|
return
|
|
}
|
|
|
|
// this gives you a commitment from an amount
|
|
// this is used to convert tx fee or miner tx amount to commitment
|
|
func Commitment_From_Amount(amount uint64) Key {
|
|
return *(ScalarMultH(d2h(amount)))
|
|
}
|
|
|
|
// this is used to convert miner tx commitment to mask
|
|
// equivalent to rctOps.cpp zeroCommit
|
|
func ZeroCommitment_From_Amount(amount uint64) Key {
|
|
mask := *(identity())
|
|
mask = ScalarmultBase(mask)
|
|
am := d2h(amount)
|
|
bH := ScalarMultH(am)
|
|
AddKeys(&mask, &mask, bH)
|
|
return mask
|
|
}
|