|
package difficulty
|
|
|
|
|
|
import "fmt"
|
|
import "math/big"
|
|
|
|
import "github.com/deroproject/derosuite/config"
|
|
import "github.com/deroproject/derosuite/crypto"
|
|
|
|
var (
|
|
// bigZero is 0 represented as a big.Int. It is defined here to avoid
|
|
// the overhead of creating it multiple times.
|
|
bigZero = big.NewInt(0)
|
|
|
|
// bigOne is 1 represented as a big.Int. It is defined here to avoid
|
|
// the overhead of creating it multiple times.
|
|
bigOne = big.NewInt(1)
|
|
|
|
// oneLsh256 is 1 shifted left 256 bits. It is defined here to avoid
|
|
// the overhead of creating it multiple times.
|
|
oneLsh256 = new(big.Int).Lsh(bigOne, 256)
|
|
)
|
|
|
|
// HashToBig converts a PoW has into a big.Int that can be used to
|
|
// perform math comparisons.
|
|
func HashToBig(buf crypto.Hash) *big.Int {
|
|
// A Hash is in little-endian, but the big package wants the bytes in
|
|
// big-endian, so reverse them.
|
|
blen := len(buf) // its hardcoded 32 bytes, so why do len but lets do it
|
|
for i := 0; i < blen/2; i++ {
|
|
buf[i], buf[blen-1-i] = buf[blen-1-i], buf[i]
|
|
}
|
|
|
|
return new(big.Int).SetBytes(buf[:])
|
|
}
|
|
|
|
// this function calculates the difficulty in big num form
|
|
func ConvertDifficultyToBig(difficultyi uint64) *big.Int {
|
|
if difficultyi == 0 {
|
|
panic("difficulty can never be zero")
|
|
}
|
|
// (1 << 256) / (difficultyNum )
|
|
difficulty := new(big.Int).SetUint64(difficultyi)
|
|
denominator := new(big.Int).Add(difficulty, bigZero) // above 2 lines can be merged
|
|
return new(big.Int).Div(oneLsh256, denominator)
|
|
}
|
|
|
|
// this function check whether the pow hash meets difficulty criteria
|
|
func CheckPowHash(pow_hash crypto.Hash, difficulty uint64) bool {
|
|
big_difficulty := ConvertDifficultyToBig(difficulty)
|
|
big_pow_hash := HashToBig(pow_hash)
|
|
|
|
if big_pow_hash.Cmp(big_difficulty) <= 0 { // if work_pow is less than difficulty
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
/* this function calculates difficulty on the basis of previous timestamps and cumulative_difficulty */
|
|
func Next_Difficulty(timestamps []uint64, cumulative_difficulty []uint64, target_seconds uint64) (difficulty uint64) {
|
|
|
|
difficulty = 1 // default difficulty is 1 // for genesis block
|
|
|
|
if len(timestamps) > config.DIFFICULTY_BLOCKS_COUNT_V2 {
|
|
panic("More timestamps provided than required")
|
|
}
|
|
if len(timestamps) != len(cumulative_difficulty) {
|
|
panic("Number of timestamps != Number of cumulative_difficulty")
|
|
}
|
|
|
|
if len(timestamps) <= 1 {
|
|
return difficulty // return 1
|
|
}
|
|
|
|
length := uint64(len(timestamps))
|
|
|
|
weighted_timespans := uint64(0)
|
|
for i := uint64(1); i < length; i++ {
|
|
timespan := uint64(0)
|
|
if timestamps[i-1] >= timestamps[i] {
|
|
timespan = 1
|
|
} else {
|
|
timespan = timestamps[i] - timestamps[i-1]
|
|
}
|
|
if timespan > (10 * target_seconds) {
|
|
timespan = 10 * target_seconds
|
|
}
|
|
weighted_timespans += i * timespan
|
|
}
|
|
|
|
minimum_timespan := (target_seconds * length) / 2
|
|
if weighted_timespans < minimum_timespan { // fix startup weirdness
|
|
weighted_timespans = minimum_timespan
|
|
}
|
|
|
|
total_work := cumulative_difficulty[length-1] - cumulative_difficulty[0]
|
|
|
|
// convert input for 128 bit multiply
|
|
var big_total_work, big_target, big_result big.Int
|
|
big_total_work.SetUint64(total_work)
|
|
|
|
target := (((length + 1) / 2) * target_seconds * 3) / 2
|
|
big_target.SetUint64(target)
|
|
|
|
big_result.Mul(&big_total_work, &big_target)
|
|
|
|
if big_result.IsUint64() {
|
|
if big_result.Uint64() > 0x000fffffffffffff { // this will give us atleast 1 year to fix the difficulty algorithm
|
|
fmt.Printf("Total work per target_time will soon cross 2^64, please fix the difficulty algorithm\n")
|
|
}
|
|
difficulty = big_result.Uint64() / weighted_timespans
|
|
} else {
|
|
panic("Total work per target_time crossing 2^64 , please fix the above")
|
|
}
|
|
|
|
return difficulty
|
|
}
|