|
|
@ -7,11 +7,17 @@ import ( |
|
|
|
"github.com/ethereum/go-ethereum/crypto/bls12381" |
|
|
|
) |
|
|
|
|
|
|
|
// todo: unify addition & multiplicative notation in the comments
|
|
|
|
|
|
|
|
// Contribution contains the SRS with its Proof
|
|
|
|
type Contribution struct { |
|
|
|
SRS *SRS |
|
|
|
Proof *Proof |
|
|
|
} |
|
|
|
|
|
|
|
// SRS contains the powers of tau in G1 & G2, eg.
|
|
|
|
// [τ'⁰]₁, [τ'¹]₁, [τ'²]₁, ..., [τ'ⁿ⁻¹]₁,
|
|
|
|
// [τ'⁰]₂, [τ'¹]₂, [τ'²]₂, ..., [τ'ⁿ⁻¹]₂
|
|
|
|
type SRS struct { |
|
|
|
G1s []*bls12381.PointG1 |
|
|
|
G2s []*bls12381.PointG2 |
|
|
@ -22,6 +28,7 @@ type toxicWaste struct { |
|
|
|
TauG2 *bls12381.PointG2 |
|
|
|
} |
|
|
|
|
|
|
|
// Proof contains g₂ᵖ and g₂^τ', used by the verifier
|
|
|
|
type Proof struct { |
|
|
|
G2P *bls12381.PointG2 // g₂ᵖ
|
|
|
|
G1PTau *bls12381.PointG1 // g₂^τ' = g₂^{p ⋅ τ}
|
|
|
@ -85,7 +92,8 @@ func genProof(toxicWaste *toxicWaste, prevSRS, newSRS *SRS) *Proof { |
|
|
|
return &Proof{toxicWaste.TauG2, G1_p} |
|
|
|
} |
|
|
|
|
|
|
|
// Contribute
|
|
|
|
// Contribute takes as input the previous SRS and a random byte slice, and
|
|
|
|
// returns the new SRS together with the Proof
|
|
|
|
func Contribute(prevSRS *SRS, randomness []byte) (Contribution, error) { |
|
|
|
// set tau from randomness
|
|
|
|
tw := tau(randomness) |
|
|
@ -97,14 +105,80 @@ func Contribute(prevSRS *SRS, randomness []byte) (Contribution, error) { |
|
|
|
return Contribution{SRS: newSRS, Proof: proof}, nil |
|
|
|
} |
|
|
|
|
|
|
|
// Verify checks the correct computation of the new SRS respectively from the
|
|
|
|
// previous SRS
|
|
|
|
func Verify(prevSRS, newSRS *SRS, proof *Proof) bool { |
|
|
|
g1 := bls12381.NewG1() |
|
|
|
g2 := bls12381.NewG2() |
|
|
|
pairing := bls12381.NewPairingEngine() |
|
|
|
|
|
|
|
// 1. check that elements of the newSRS are valid points
|
|
|
|
for i := 0; i < len(newSRS.G1s); i++ { |
|
|
|
// i) non-empty
|
|
|
|
if newSRS.G1s[i] == nil { |
|
|
|
return false |
|
|
|
} |
|
|
|
// ii) non-zero
|
|
|
|
if g1.IsZero(newSRS.G1s[i]) { |
|
|
|
return false |
|
|
|
} |
|
|
|
// iii) in the correct prime order of subgroups
|
|
|
|
if !g1.IsOnCurve(newSRS.G1s[i]) { |
|
|
|
return false |
|
|
|
} |
|
|
|
if !g1.InCorrectSubgroup(newSRS.G1s[i]) { |
|
|
|
return false |
|
|
|
} |
|
|
|
} |
|
|
|
for i := 0; i < len(newSRS.G2s); i++ { |
|
|
|
// i) non-empty
|
|
|
|
if newSRS.G2s[i] == nil { |
|
|
|
return false |
|
|
|
} |
|
|
|
// ii) non-zero
|
|
|
|
if g2.IsZero(newSRS.G2s[i]) { |
|
|
|
return false |
|
|
|
} |
|
|
|
// iii) in the correct prime order of subgroups
|
|
|
|
if !g2.IsOnCurve(newSRS.G2s[i]) { |
|
|
|
return false |
|
|
|
} |
|
|
|
if !g2.InCorrectSubgroup(newSRS.G2s[i]) { |
|
|
|
return false |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// check proof.G1PTau == newSRS.G1s[1]
|
|
|
|
// 2. check proof.G1PTau == newSRS.G1s[1]
|
|
|
|
if !g1.Equal(proof.G1PTau, newSRS.G1s[1]) { |
|
|
|
return false |
|
|
|
} |
|
|
|
|
|
|
|
// WIP!
|
|
|
|
// 3. check newSRS.G1s[1] (g₁^τ'), is correctly related to prevSRS.G1s[1] (g₁^τ)
|
|
|
|
// e([τ]₁, [p]₂) == e([τ']₁, [1]₂)
|
|
|
|
e0 := pairing.AddPair(prevSRS.G1s[1], proof.G2P).Result() |
|
|
|
e1 := pairing.AddPair(newSRS.G1s[1], g2.One()).Result() |
|
|
|
if !e0.Equal(e1) { |
|
|
|
return false |
|
|
|
} |
|
|
|
|
|
|
|
// 4. check newSRS following the powers of tau structure
|
|
|
|
for i := 0; i < len(newSRS.G1s)-1; i++ { |
|
|
|
// i) e([τ'ⁱ]₁, [τ']₂) == e([τ'ⁱ⁺¹]₁, [1]₂), for i ∈ [1, n−1]
|
|
|
|
e0 := pairing.AddPair(newSRS.G1s[i], newSRS.G2s[1]).Result() |
|
|
|
e1 := pairing.AddPair(newSRS.G1s[i+1], g2.One()).Result() |
|
|
|
if !e0.Equal(e1) { |
|
|
|
return false |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
for i := 0; i < len(newSRS.G2s)-1; i++ { |
|
|
|
// ii) e([τ']₁, [τ'ʲ]₂) == e([1]₁, [τ'ʲ⁺¹]₂), for j ∈ [1, m−1]
|
|
|
|
e3 := pairing.AddPair(newSRS.G1s[1], newSRS.G2s[i]).Result() |
|
|
|
e4 := pairing.AddPair(g1.One(), newSRS.G2s[i+1]).Result() |
|
|
|
if !e3.Equal(e4) { |
|
|
|
return false |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return true |
|
|
|
} |