Browse Source

Add SRS & Proof verification impl

main
arnaucube 2 years ago
parent
commit
4aae977ea9
2 changed files with 78 additions and 4 deletions
  1. +77
    -3
      powersoftau.go
  2. +1
    -1
      powersoftau_test.go

+ 77
- 3
powersoftau.go

@ -7,11 +7,17 @@ import (
"github.com/ethereum/go-ethereum/crypto/bls12381"
)
// todo: unify addition & multiplicative notation in the comments
// Contribution contains the SRS with its Proof
type Contribution struct {
SRS *SRS
Proof *Proof
}
// SRS contains the powers of tau in G1 & G2, eg.
// [τ'⁰]₁, [τ'¹]₁, [τ'²]₁, ..., [τ'ⁿ⁻¹]₁,
// [τ'⁰]₂, [τ'¹]₂, [τ'²]₂, ..., [τ'ⁿ⁻¹]₂
type SRS struct {
G1s []*bls12381.PointG1
G2s []*bls12381.PointG2
@ -22,6 +28,7 @@ type toxicWaste struct {
TauG2 *bls12381.PointG2
}
// Proof contains g₂ᵖ and g₂^τ', used by the verifier
type Proof struct {
G2P *bls12381.PointG2 // g₂ᵖ
G1PTau *bls12381.PointG1 // g₂^τ' = g₂^{p ⋅ τ}
@ -85,7 +92,8 @@ func genProof(toxicWaste *toxicWaste, prevSRS, newSRS *SRS) *Proof {
return &Proof{toxicWaste.TauG2, G1_p}
}
// Contribute
// Contribute takes as input the previous SRS and a random byte slice, and
// returns the new SRS together with the Proof
func Contribute(prevSRS *SRS, randomness []byte) (Contribution, error) {
// set tau from randomness
tw := tau(randomness)
@ -97,14 +105,80 @@ func Contribute(prevSRS *SRS, randomness []byte) (Contribution, error) {
return Contribution{SRS: newSRS, Proof: proof}, nil
}
// Verify checks the correct computation of the new SRS respectively from the
// previous SRS
func Verify(prevSRS, newSRS *SRS, proof *Proof) bool {
g1 := bls12381.NewG1()
g2 := bls12381.NewG2()
pairing := bls12381.NewPairingEngine()
// 1. check that elements of the newSRS are valid points
for i := 0; i < len(newSRS.G1s); i++ {
// i) non-empty
if newSRS.G1s[i] == nil {
return false
}
// ii) non-zero
if g1.IsZero(newSRS.G1s[i]) {
return false
}
// iii) in the correct prime order of subgroups
if !g1.IsOnCurve(newSRS.G1s[i]) {
return false
}
if !g1.InCorrectSubgroup(newSRS.G1s[i]) {
return false
}
}
for i := 0; i < len(newSRS.G2s); i++ {
// i) non-empty
if newSRS.G2s[i] == nil {
return false
}
// ii) non-zero
if g2.IsZero(newSRS.G2s[i]) {
return false
}
// iii) in the correct prime order of subgroups
if !g2.IsOnCurve(newSRS.G2s[i]) {
return false
}
if !g2.InCorrectSubgroup(newSRS.G2s[i]) {
return false
}
}
// check proof.G1PTau == newSRS.G1s[1]
// 2. check proof.G1PTau == newSRS.G1s[1]
if !g1.Equal(proof.G1PTau, newSRS.G1s[1]) {
return false
}
// WIP!
// 3. check newSRS.G1s[1] (g₁^τ'), is correctly related to prevSRS.G1s[1] (g₁^τ)
// e([τ]₁, [p]₂) == e([τ']₁, [1]₂)
e0 := pairing.AddPair(prevSRS.G1s[1], proof.G2P).Result()
e1 := pairing.AddPair(newSRS.G1s[1], g2.One()).Result()
if !e0.Equal(e1) {
return false
}
// 4. check newSRS following the powers of tau structure
for i := 0; i < len(newSRS.G1s)-1; i++ {
// i) e([τ'ⁱ]₁, [τ']₂) == e([τ'ⁱ⁺¹]₁, [1]₂), for i ∈ [1, n−1]
e0 := pairing.AddPair(newSRS.G1s[i], newSRS.G2s[1]).Result()
e1 := pairing.AddPair(newSRS.G1s[i+1], g2.One()).Result()
if !e0.Equal(e1) {
return false
}
}
for i := 0; i < len(newSRS.G2s)-1; i++ {
// ii) e([τ']₁, [τ'ʲ]₂) == e([1]₁, [τ'ʲ⁺¹]₂), for j ∈ [1, m−1]
e3 := pairing.AddPair(newSRS.G1s[1], newSRS.G2s[i]).Result()
e4 := pairing.AddPair(g1.One(), newSRS.G2s[i+1]).Result()
if !e3.Equal(e4) {
return false
}
}
return true
}

+ 1
- 1
powersoftau_test.go

@ -6,7 +6,7 @@ import (
qt "github.com/frankban/quicktest"
)
func TestContribute(t *testing.T) {
func TestContribution(t *testing.T) {
c := qt.New(t)
srs_0 := newEmptySRS(10, 10)

Loading…
Cancel
Save