package kzgceremony
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
|
|
bls12381 "github.com/kilic/bls12-381"
|
|
)
|
|
|
|
// todo: unify addition & multiplicative notation in the comments
|
|
|
|
const MinRandomnessLen = 64
|
|
|
|
type Witness struct {
|
|
RunningProducts []*bls12381.PointG1
|
|
PotPubKeys []*bls12381.PointG2
|
|
BLSSignatures []*bls12381.PointG1
|
|
}
|
|
|
|
type Transcript struct {
|
|
NumG1Powers uint64
|
|
NumG2Powers uint64
|
|
PowersOfTau *SRS
|
|
Witness *Witness
|
|
}
|
|
|
|
type State struct {
|
|
Transcripts []Transcript
|
|
ParticipantIDs []string // WIP
|
|
ParticipantECDSASignatures []string
|
|
}
|
|
|
|
type Contribution struct {
|
|
NumG1Powers uint64
|
|
NumG2Powers uint64
|
|
PowersOfTau *SRS
|
|
PotPubKey *bls12381.PointG2
|
|
}
|
|
type BatchContribution struct {
|
|
Contributions []Contribution
|
|
}
|
|
|
|
func (cs *State) Contribute(randomness []byte) (*State, error) {
|
|
ns := State{}
|
|
ns.Transcripts = make([]Transcript, len(cs.Transcripts))
|
|
for i := 0; i < len(cs.Transcripts); i++ {
|
|
ns.Transcripts[i].NumG1Powers = cs.Transcripts[i].NumG1Powers
|
|
ns.Transcripts[i].NumG2Powers = cs.Transcripts[i].NumG2Powers
|
|
|
|
newSRS, proof, err := Contribute(cs.Transcripts[i].PowersOfTau, randomness)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
ns.Transcripts[i].PowersOfTau = newSRS
|
|
|
|
ns.Transcripts[i].Witness = &Witness{}
|
|
ns.Transcripts[i].Witness.RunningProducts =
|
|
append(cs.Transcripts[i].Witness.RunningProducts, proof.G1PTau)
|
|
ns.Transcripts[i].Witness.PotPubKeys =
|
|
append(cs.Transcripts[i].Witness.PotPubKeys, proof.G2P)
|
|
ns.Transcripts[i].Witness.BLSSignatures = cs.Transcripts[i].Witness.BLSSignatures
|
|
}
|
|
ns.ParticipantIDs = cs.ParticipantIDs // TODO add github id (id_token.sub)
|
|
ns.ParticipantECDSASignatures = cs.ParticipantECDSASignatures
|
|
|
|
return &ns, nil
|
|
}
|
|
|
|
func (pb *BatchContribution) Contribute(randomness []byte) (*BatchContribution, error) {
|
|
nb := BatchContribution{}
|
|
nb.Contributions = make([]Contribution, len(pb.Contributions))
|
|
for i := 0; i < len(pb.Contributions); i++ {
|
|
nb.Contributions[i].NumG1Powers = pb.Contributions[i].NumG1Powers
|
|
nb.Contributions[i].NumG2Powers = pb.Contributions[i].NumG2Powers
|
|
|
|
newSRS, proof, err := Contribute(pb.Contributions[i].PowersOfTau, randomness)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
nb.Contributions[i].PowersOfTau = newSRS
|
|
|
|
nb.Contributions[i].PotPubKey = proof.G2P
|
|
}
|
|
|
|
return &nb, nil
|
|
}
|
|
|
|
// SRS contains the powers of tau in G1 & G2, eg.
|
|
// [τ'⁰]₁, [τ'¹]₁, [τ'²]₁, ..., [τ'ⁿ⁻¹]₁,
|
|
// [τ'⁰]₂, [τ'¹]₂, [τ'²]₂, ..., [τ'ⁿ⁻¹]₂
|
|
type SRS struct {
|
|
G1Powers []*bls12381.PointG1
|
|
G2Powers []*bls12381.PointG2
|
|
}
|
|
|
|
type toxicWaste struct {
|
|
tau *big.Int
|
|
TauG2 *bls12381.PointG2
|
|
}
|
|
|
|
// Proof contains g₂ᵖ and g₂^τ', used by the verifier
|
|
type Proof struct {
|
|
G2P *bls12381.PointG2 // g₂ᵖ
|
|
G1PTau *bls12381.PointG1 // g₂^τ' = g₂^{p ⋅ τ}
|
|
}
|
|
|
|
// newEmptySRS creates an empty SRS
|
|
func newEmptySRS(nG1, nG2 int) *SRS {
|
|
g1s := make([]*bls12381.PointG1, nG1)
|
|
g2s := make([]*bls12381.PointG2, nG2)
|
|
g1 := bls12381.NewG1()
|
|
g2 := bls12381.NewG2()
|
|
// one_G1 := g1.One()
|
|
// one_G2 := g2.One()
|
|
for i := 0; i < nG1; i++ {
|
|
g1s[i] = g1.One()
|
|
// g1.MulScalar(g1s[i], one_G1, big.NewInt(int64(i)))
|
|
}
|
|
for i := 0; i < nG2; i++ {
|
|
g2s[i] = g2.One()
|
|
// g2.MulScalar(g2s[i], one_G2, big.NewInt(int64(i)))
|
|
}
|
|
return &SRS{g1s, g2s}
|
|
}
|
|
|
|
func tau(randomness []byte) *toxicWaste {
|
|
g2 := bls12381.NewG2()
|
|
tau := new(big.Int).Mod(
|
|
new(big.Int).SetBytes(randomness),
|
|
g2.Q())
|
|
tau_Fr := bls12381.NewFr().FromBytes(tau.Bytes())
|
|
TauG2 := g2.New()
|
|
g2.MulScalar(TauG2, g2.One(), tau_Fr)
|
|
|
|
return &toxicWaste{tau, TauG2}
|
|
}
|
|
|
|
func computeContribution(t *toxicWaste, prevSRS *SRS) *SRS {
|
|
srs := newEmptySRS(len(prevSRS.G1Powers), len(prevSRS.G2Powers))
|
|
g1 := bls12381.NewG1()
|
|
g2 := bls12381.NewG2()
|
|
Q := g1.Q() // Q = |G1| == |G2|
|
|
|
|
// fmt.Println("Computing [τ'⁰]₁, [τ'¹]₁, [τ'²]₁, ..., [τ'ⁿ⁻¹]₁, for n =", len(prevSRS.G1s))
|
|
for i := 0; i < len(prevSRS.G1Powers); i++ {
|
|
tau_i := new(big.Int).Exp(t.tau, big.NewInt(int64(i)), Q)
|
|
tau_i_Fr := bls12381.NewFr().FromBytes(tau_i.Bytes())
|
|
g1.MulScalar(srs.G1Powers[i], prevSRS.G1Powers[i], tau_i_Fr)
|
|
}
|
|
// fmt.Println("Computing [τ'⁰]₂, [τ'¹]₂, [τ'²]₂, ..., [τ'ⁿ⁻¹]₂, for n =", len(prevSRS.G2s))
|
|
for i := 0; i < len(prevSRS.G2Powers); i++ {
|
|
tau_i := new(big.Int).Exp(t.tau, big.NewInt(int64(i)), Q)
|
|
tau_i_Fr := bls12381.NewFr().FromBytes(tau_i.Bytes())
|
|
g2.MulScalar(srs.G2Powers[i], prevSRS.G2Powers[i], tau_i_Fr)
|
|
}
|
|
|
|
return srs
|
|
}
|
|
|
|
func genProof(toxicWaste *toxicWaste, prevSRS, newSRS *SRS) *Proof {
|
|
g1 := bls12381.NewG1()
|
|
G1_p := g1.New()
|
|
tau_Fr := bls12381.NewFr().FromBytes(toxicWaste.tau.Bytes())
|
|
g1.MulScalar(G1_p, prevSRS.G1Powers[1], tau_Fr) // g_1^{tau'} = g_1^{p * tau}, where p=toxicWaste.tau
|
|
|
|
return &Proof{toxicWaste.TauG2, G1_p}
|
|
}
|
|
|
|
// Contribute takes as input the previous SRS and a random
|
|
// byte slice, and returns the new SRS together with the Proof
|
|
func Contribute(prevSRS *SRS, randomness []byte) (*SRS, *Proof, error) {
|
|
if len(randomness) < MinRandomnessLen {
|
|
return nil, nil, fmt.Errorf("err randomness") // WIP
|
|
}
|
|
// set tau from randomness
|
|
tw := tau(randomness)
|
|
|
|
newSRS := computeContribution(tw, prevSRS)
|
|
|
|
proof := genProof(tw, prevSRS, newSRS)
|
|
|
|
return newSRS, proof, nil
|
|
}
|
|
|
|
// Verify checks the correct computation of the new SRS respectively from the
|
|
// previous SRS
|
|
func Verify(prevSRS, newSRS *SRS, proof *Proof) bool {
|
|
g1 := bls12381.NewG1()
|
|
g2 := bls12381.NewG2()
|
|
pairing := bls12381.NewEngine()
|
|
|
|
// 1. check that elements of the newSRS are valid points
|
|
for i := 0; i < len(newSRS.G1Powers); i++ {
|
|
// i) non-empty
|
|
if newSRS.G1Powers[i] == nil {
|
|
return false
|
|
}
|
|
// ii) non-zero
|
|
if g1.IsZero(newSRS.G1Powers[i]) {
|
|
return false
|
|
}
|
|
// iii) in the correct prime order of subgroups
|
|
if !g1.IsOnCurve(newSRS.G1Powers[i]) {
|
|
return false
|
|
}
|
|
if !g1.InCorrectSubgroup(newSRS.G1Powers[i]) {
|
|
return false
|
|
}
|
|
}
|
|
for i := 0; i < len(newSRS.G2Powers); i++ {
|
|
// i) non-empty
|
|
if newSRS.G2Powers[i] == nil {
|
|
return false
|
|
}
|
|
// ii) non-zero
|
|
if g2.IsZero(newSRS.G2Powers[i]) {
|
|
return false
|
|
}
|
|
// iii) in the correct prime order of subgroups
|
|
if !g2.IsOnCurve(newSRS.G2Powers[i]) {
|
|
return false
|
|
}
|
|
if !g2.InCorrectSubgroup(newSRS.G2Powers[i]) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// 2. check proof.G1PTau == newSRS.G1Powers[1]
|
|
if !g1.Equal(proof.G1PTau, newSRS.G1Powers[1]) {
|
|
return false
|
|
}
|
|
|
|
// 3. check newSRS.G1s[1] (g₁^τ'), is correctly related to prevSRS.G1s[1] (g₁^τ)
|
|
// e([τ]₁, [p]₂) == e([τ']₁, [1]₂)
|
|
eL := pairing.AddPair(prevSRS.G1Powers[1], proof.G2P).Result()
|
|
eR := pairing.AddPair(newSRS.G1Powers[1], g2.One()).Result()
|
|
if !eL.Equal(eR) {
|
|
return false
|
|
}
|
|
|
|
// 4. check newSRS following the powers of tau structure
|
|
for i := 0; i < len(newSRS.G1Powers)-1; i++ {
|
|
// i) e([τ'ⁱ]₁, [τ']₂) == e([τ'ⁱ⁺¹]₁, [1]₂), for i ∈ [1, n−1]
|
|
eL := pairing.AddPair(newSRS.G1Powers[i], newSRS.G2Powers[1]).Result()
|
|
eR := pairing.AddPair(newSRS.G1Powers[i+1], g2.One()).Result()
|
|
if !eL.Equal(eR) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
for i := 0; i < len(newSRS.G2Powers)-1; i++ {
|
|
// ii) e([τ']₁, [τ'ʲ]₂) == e([1]₁, [τ'ʲ⁺¹]₂), for j ∈ [1, m−1]
|
|
eL := pairing.AddPair(newSRS.G1Powers[1], newSRS.G2Powers[i]).Result()
|
|
eR := pairing.AddPair(g1.One(), newSRS.G2Powers[i+1]).Result()
|
|
if !eL.Equal(eR) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|