Browse Source

impl EthDos's FCircuit (circuit that is folded)

main
arnaucube 3 months ago
parent
commit
1a2ad91bc5
2 changed files with 312 additions and 0 deletions
  1. +155
    -0
      src/fcircuit.rs
  2. +157
    -0
      src/signature.rs

+ 155
- 0
src/fcircuit.rs

@ -0,0 +1,155 @@
use ark_crypto_primitives::sponge::{
constraints::CryptographicSpongeVar,
poseidon::{constraints::PoseidonSpongeVar, PoseidonConfig},
Absorb,
};
use ark_ec::CurveGroup;
use ark_ff::{Field, PrimeField};
use ark_r1cs_std::prelude::CurveVar;
use ark_r1cs_std::{
boolean::Boolean,
eq::EqGadget,
fields::{fp::FpVar, FieldVar},
};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use ark_std::marker::PhantomData;
use std::fmt::Debug;
use arkeddsa::constraints::verify;
use folding_schemes::{frontend::FCircuit, Error};
use crate::signature::{SigPk, SigPkVar};
pub type CF<C> = <<C as CurveGroup>::BaseField as Field>::BasePrimeField;
/// Test circuit to be folded
#[derive(Clone, Debug)]
pub struct EthDosCircuit<F: PrimeField, C: CurveGroup, GC: CurveVar<C, F>> {
_c: PhantomData<C>,
_gc: PhantomData<GC>,
config: PoseidonConfig<F>,
}
impl<F: PrimeField, C: CurveGroup, GC: CurveVar<C, F>> FCircuit<F> for EthDosCircuit<F, C, GC>
where
F: Absorb,
C: CurveGroup<BaseField = F>,
{
type Params = PoseidonConfig<F>;
type ExternalInputs = SigPk<C>;
type ExternalInputsVar = SigPkVar<C, GC>;
fn new(config: Self::Params) -> Result<Self, Error> {
Ok(Self {
_c: PhantomData,
_gc: PhantomData,
config,
})
}
fn state_len(&self) -> usize {
5
}
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
external_inputs: Self::ExternalInputsVar,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let pk_0_x = z_i[0].clone();
let pk_0_y = z_i[1].clone();
let pk_i_x = z_i[2].clone();
let pk_i_y = z_i[3].clone();
let mut degree = z_i[4].clone();
// get the 'msg' that has been signed, which is the hash of the previous-signer public key
let mut poseidon = PoseidonSpongeVar::new(cs.clone(), &self.config);
poseidon.absorb(&vec![pk_i_x, pk_i_y])?;
let h = poseidon.squeeze_field_elements(1)?;
let msg = h
.first()
.ok_or(ark_relations::r1cs::SynthesisError::Unsatisfiable)?;
// check that the last signer is signed by the new signer
let ei: SigPkVar<C, GC> = external_inputs.into();
let res = verify::<C, GC>(
cs.clone(),
self.config.clone(),
ei.pk.clone(),
(ei.sig_r, ei.sig_s),
msg.clone(),
)?;
res.enforce_equal(&Boolean::<F>::TRUE)?;
// increment the degree
degree = degree.clone() + FpVar::<F>::one();
let pk_i1_xy = ei.pk.to_constraint_field()?;
Ok(vec![vec![pk_0_x, pk_0_y], pk_i1_xy, vec![degree]].concat())
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use ark_bn254::Fr;
use ark_ec::AffineRepr;
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem;
use ark_std::Zero;
use rand::rngs::OsRng;
use crate::signature::{gen_signatures, hash_pk};
use arkeddsa::ed_on_bn254_twist::{constraints::EdwardsVar, EdwardsProjective};
use folding_schemes::transcript::poseidon::poseidon_canonical_config;
#[test]
fn test_sig() {
let mut rng = OsRng;
let poseidon_config = poseidon_canonical_config::<Fr>();
const N: usize = 1;
let ext_inps = gen_signatures::<OsRng, EdwardsProjective>(&mut rng, &poseidon_config, 1);
let e = ext_inps[0].clone();
let msg = hash_pk(&poseidon_config, e.pk);
e.pk.verify(&poseidon_config, &msg, &e.sig).unwrap();
}
fn ensure_fcircuit_trait<FC: FCircuit<Fr>>(params: FC::Params) {
let _ = FC::new(params);
}
// test to check that the Sha256FCircuit computes the same values inside and outside the circuit
#[test]
fn test_fcircuit() {
let mut rng = rand::rngs::OsRng;
let poseidon_config = poseidon_canonical_config::<Fr>();
let pks_sigs = gen_signatures::<OsRng, EdwardsProjective>(&mut rng, &poseidon_config, 1);
// here `Fr` is the BN254::G1::Fr = ed_on_bn254_twist::EdwardsProjective::Fq
let cs = ConstraintSystem::<Fr>::new_ref();
type FC = EthDosCircuit<Fr, EdwardsProjective, EdwardsVar>;
ensure_fcircuit_trait::<FC>(poseidon_config.clone());
let circuit = FC::new(poseidon_config).unwrap();
let xy: (Fr, Fr) = pks_sigs[0].pk.0.xy().unwrap();
let pk0 = vec![xy.0, xy.1];
let z_i: Vec<Fr> = vec![pk0.clone(), pk0, vec![Fr::zero()]].concat();
let external_inputs_var =
SigPkVar::<EdwardsProjective, EdwardsVar>::new_witness(cs.clone(), || Ok(pks_sigs[0]))
.unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), 0, z_iVar.clone(), external_inputs_var)
.unwrap();
// check that the degree (in the last state) is 1, the amount of signatures verified
assert_eq!(computed_z_i1Var.value().unwrap()[4], Fr::from(1_u32));
assert!(cs.is_satisfied().unwrap());
dbg!(cs.num_constraints());
dbg!(&computed_z_i1Var.value().unwrap());
}
}

+ 157
- 0
src/signature.rs

@ -0,0 +1,157 @@
use ark_crypto_primitives::sponge::{
poseidon::{PoseidonConfig, PoseidonSponge},
Absorb, CryptographicSponge,
};
use ark_ec::{AffineRepr, CurveGroup};
use ark_ff::{BigInteger, PrimeField};
use ark_r1cs_std::alloc::{AllocVar, AllocationMode};
use ark_r1cs_std::boolean::Boolean;
use ark_r1cs_std::prelude::CurveVar;
use ark_relations::r1cs::{Namespace, SynthesisError};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{rand::Rng, Zero};
use core::borrow::Borrow;
use rand_core::CryptoRngCore;
use std::fmt::Debug;
use arkeddsa::{signature::Signature, PublicKey, SigningKey};
use crate::fcircuit::CF;
// recall, here C = ed_on_bn254, so C::BaseField = BN254::ScalarField
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct SigPk<C: CurveGroup> {
pub pk: PublicKey<C>,
pub sig: Signature<C>,
}
impl<C: CurveGroup> Default for SigPk<C> {
fn default() -> Self {
Self {
pk: PublicKey(C::zero().into_affine()),
sig: Signature::new(C::zero().into_affine(), C::ScalarField::zero()),
}
}
}
impl<C: CurveGroup> SigPk<C> {
pub fn to_bytes(&self) -> Vec<u8> {
let sig_bytes = self.sig.to_bytes();
let pk_bytes = self.pk.to_bytes();
vec![sig_bytes, pk_bytes].concat()
}
pub fn from_bytes(b: Vec<u8>) -> Self {
let u_point_size = C::Affine::generator().serialized_size(ark_serialize::Compress::No);
let sig = Signature::<C>::from_bytes(&b[..32 + u_point_size]).unwrap();
let pk = PublicKey::<C>::from_bytes(&b[32 + u_point_size..]).unwrap();
Self { pk, sig }
}
}
#[derive(Clone, Debug)]
pub struct SigPkVar<C: CurveGroup, GC: CurveVar<C, CF<C>>> {
pub pk: GC,
pub sig_r: GC,
pub sig_s: Vec<Boolean<CF<C>>>,
}
impl<C: CurveGroup, GC: CurveVar<C, CF<C>>> Default for SigPkVar<C, GC> {
fn default() -> Self {
Self {
pk: GC::zero(),
sig_r: GC::zero(),
sig_s: vec![Boolean::<CF<C>>::FALSE; 253], // TODO 253-> fieldbitsize
}
}
}
impl<C, GC> AllocVar<SigPk<C>, CF<C>> for SigPkVar<C, GC>
where
C: CurveGroup,
GC: CurveVar<C, CF<C>>,
{
fn new_variable<T: Borrow<SigPk<C>>>(
cs: impl Into<Namespace<CF<C>>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
f().and_then(|val| {
let cs = cs.into();
let e = val.borrow();
let pk = GC::new_variable(cs.clone(), || Ok(e.pk.0), mode)?;
let sig_r = GC::new_variable(cs.clone(), || Ok(e.sig.r), mode)?;
let sig_s = Vec::<Boolean<CF<C>>>::new_variable(
cs.clone(),
|| Ok(e.sig.s.into_bigint().to_bits_le()),
mode,
)?;
let v = Self { pk, sig_r, sig_s };
Ok(v)
})
}
}
pub fn hash_pk<C: CurveGroup>(
poseidon_config: &PoseidonConfig<C::BaseField>,
pk: PublicKey<C>,
) -> C::BaseField
where
C::BaseField: PrimeField + Absorb,
{
let mut poseidon = PoseidonSponge::new(poseidon_config);
let (pk_x, pk_y): (C::BaseField, C::BaseField) = pk.xy().unwrap();
poseidon.absorb(&vec![pk_x, pk_y]);
let k = poseidon.squeeze_field_elements::<C::BaseField>(1);
*k.first().unwrap()
}
// returns a vector of signatures & publickeys, where each signature is of the previous public key
pub fn gen_signatures<R: Rng + CryptoRngCore, C: CurveGroup>(
rng: &mut R,
poseidon_config: &PoseidonConfig<C::BaseField>,
steps: usize,
) -> Vec<SigPk<C>>
where
C::BaseField: PrimeField + Absorb,
{
let mut prev_pk = None;
let mut res: Vec<SigPk<C>> = Vec::new();
for _ in 0..steps {
let extinp = gen_sig(rng, poseidon_config, prev_pk);
res.push(extinp);
prev_pk = Some(extinp.pk);
}
res
}
// generates a new secret key, and signs the given `prev_pk` with it. If the `prev_pk==None`, it
// will use the newly generated public key as the prev_pk.
pub fn gen_sig<R: Rng + CryptoRngCore, C: CurveGroup>(
rng: &mut R,
poseidon_config: &PoseidonConfig<C::BaseField>,
prev_pk: Option<PublicKey<C>>,
) -> SigPk<C>
where
C::BaseField: PrimeField + Absorb,
{
let sk = SigningKey::<C>::generate::<blake2::Blake2b512>(rng).unwrap();
let pk = sk.public_key();
// if prev_pk!=None, use it, else, set the new pk to it
let prev_pk = if prev_pk.is_some() {
prev_pk.unwrap()
} else {
*pk
};
let msg = hash_pk(poseidon_config, prev_pk);
let sig = sk
.sign::<blake2::Blake2b512>(&poseidon_config, &msg)
.unwrap();
pk.verify(&poseidon_config, &msg, &sig).unwrap();
SigPk {
pk: pk.clone(),
sig,
}
}

Loading…
Cancel
Save