use super::*; // Non-opcode gas prices const GDEFAULT: usize = 1; const GMEMORY: usize = 3; const GQUADRATICMEMDENOM: usize = 512; // 1 gas per 512 quadwords const GSTORAGEREFUND: usize = 15000; const GSTORAGEKILL: usize = 5000; const GSTORAGEMOD: usize = 5000; const GSTORAGEADD: usize = 20000; const GEXPONENTBYTE: usize = 10; // cost of EXP exponent per byte const EXP_SUPPLEMENTAL_GAS: usize = 40; const GCOPY: usize = 3; // cost to copy one 32 byte word const GCONTRACTBYTE: usize = 200; // one byte of code in contract creation const GCALLVALUETRANSFER: usize = 9000; // non-zero-valued call const GLOGBYTE: usize = 8; // cost of a byte of logdata const GTXCOST: usize = 21000; // TX BASE GAS COST const GTXDATAZERO: usize = 4; // TX DATA ZERO BYTE GAS COST const GTXDATANONZERO: usize = 68; // TX DATA NON ZERO BYTE GAS COST const GSHA3WORD: usize = 6; // Cost of SHA3 per word const GSHA256BASE: usize = 60; // Base c of SHA256 const GSHA256WORD: usize = 12; // Cost of SHA256 per word const GRIPEMD160BASE: usize = 600; // Base cost of RIPEMD160 const GRIPEMD160WORD: usize = 120; // Cost of RIPEMD160 per word const GIDENTITYBASE: usize = 15; // Base cost of indentity const GIDENTITYWORD: usize = 3; // Cost of identity per word const GECRECOVER: usize = 3000; // Cost of ecrecover op const GSTIPEND: usize = 2300; const GCALLNEWACCOUNT: usize = 25000; const GSUICIDEREFUND: usize = 24000; pub struct Opcode { pub name: String, pub ins: u32, pub outs: u32, pub gas: u64, // operation: fn(), } pub fn new_opcode(name: &str, ins: u32, outs: u32, gas: u64) -> Opcode { Opcode { name: name.to_string(), ins, outs, gas, } } pub fn new_opcodes() -> HashMap { let mut opcodes: HashMap = HashMap::new(); // arithmetic opcodes.insert(0x00, new_opcode("STOP", 0, 0, 0)); opcodes.insert(0x01, new_opcode("ADD", 2, 1, 3)); opcodes.insert(0x02, new_opcode("MUL", 2, 1, 5)); opcodes.insert(0x03, new_opcode("SUB", 2, 1, 3)); opcodes.insert(0x04, new_opcode("DIV", 2, 1, 5)); opcodes.insert(0x05, new_opcode("SDIV", 2, 1, 5)); opcodes.insert(0x06, new_opcode("MOD", 2, 1, 5)); opcodes.insert(0x07, new_opcode("SMOD", 2, 1, 5)); opcodes.insert(0x08, new_opcode("ADDMOD", 3, 1, 8)); opcodes.insert(0x09, new_opcode("MULMOD", 3, 1, 8)); opcodes.insert(0x0a, new_opcode("EXP", 2, 1, 10)); opcodes.insert(0x0b, new_opcode("SIGNEXTEND", 2, 1, 5)); // boolean opcodes.insert(0x10, new_opcode("LT", 2, 1, 3)); opcodes.insert(0x11, new_opcode("GT", 2, 1, 3)); opcodes.insert(0x12, new_opcode("SLT", 2, 1, 3)); opcodes.insert(0x13, new_opcode("SGT", 2, 1, 3)); opcodes.insert(0x14, new_opcode("EQ", 2, 1, 3)); opcodes.insert(0x15, new_opcode("ISZERO", 1, 1, 3)); opcodes.insert(0x16, new_opcode("AND", 2, 1, 3)); opcodes.insert(0x17, new_opcode("OR", 2, 1, 3)); opcodes.insert(0x18, new_opcode("XOR", 2, 1, 3)); opcodes.insert(0x19, new_opcode("NOT", 1, 1, 3)); opcodes.insert(0x1a, new_opcode("BYTE", 2, 1, 3)); // crypto opcodes.insert(0x20, new_opcode("SHA3", 2, 1, 30)); // contract context opcodes.insert(0x30, new_opcode("ADDRESS", 0, 1, 2)); opcodes.insert(0x31, new_opcode("BALANCE", 1, 1, 20)); opcodes.insert(0x32, new_opcode("ORIGIN", 0, 1, 2)); opcodes.insert(0x33, new_opcode("CALLER", 0, 1, 2)); opcodes.insert(0x34, new_opcode("CALLVALUE", 0, 1, 2)); opcodes.insert(0x35, new_opcode("CALLDATALOAD", 1, 1, 3)); opcodes.insert(0x36, new_opcode("CALLDATASIZE", 0, 1, 2)); opcodes.insert(0x37, new_opcode("CALLDATACOPY", 3, 0, 3)); opcodes.insert(0x38, new_opcode("CODESIZE", 0, 1, 2)); opcodes.insert(0x39, new_opcode("CODECOPY", 3, 0, 3)); opcodes.insert(0x3a, new_opcode("GASPRICE", 0, 1, 2)); opcodes.insert(0x3b, new_opcode("EXTCODESIZE", 1, 1, 20)); opcodes.insert(0x3c, new_opcode("EXTCODECOPY", 4, 0, 20)); // blockchain context opcodes.insert(0x40, new_opcode("BLOCKHASH", 1, 1, 20)); opcodes.insert(0x41, new_opcode("COINBASE", 0, 1, 2)); opcodes.insert(0x42, new_opcode("TIMESTAMP", 0, 1, 2)); opcodes.insert(0x43, new_opcode("NUMBER", 0, 1, 2)); opcodes.insert(0x44, new_opcode("DIFFICULTY", 0, 1, 2)); opcodes.insert(0x45, new_opcode("GASLIMIT", 0, 1, 2)); // storage and execution opcodes.insert(0x50, new_opcode("POP", 1, 0, 2)); opcodes.insert(0x51, new_opcode("MLOAD", 1, 1, 3)); opcodes.insert(0x52, new_opcode("MSTORE", 2, 0, 3)); opcodes.insert(0x53, new_opcode("MSTORE8", 2, 0, 3)); opcodes.insert(0x54, new_opcode("SLOAD", 1, 1, 50)); opcodes.insert(0x55, new_opcode("SSTORE", 2, 0, 0)); opcodes.insert(0x56, new_opcode("JUMP", 1, 0, 8)); opcodes.insert(0x57, new_opcode("JUMPI", 2, 0, 10)); opcodes.insert(0x58, new_opcode("PC", 0, 1, 2)); opcodes.insert(0x59, new_opcode("MSIZE", 0, 1, 2)); opcodes.insert(0x5a, new_opcode("GAS", 0, 1, 2)); opcodes.insert(0x5b, new_opcode("JUMPDEST", 0, 0, 1)); // logging opcodes.insert(0xa0, new_opcode("LOG0", 2, 0, 375)); opcodes.insert(0xa1, new_opcode("LOG1", 3, 0, 750)); opcodes.insert(0xa2, new_opcode("LOG2", 4, 0, 1125)); opcodes.insert(0xa3, new_opcode("LOG3", 5, 0, 1500)); opcodes.insert(0xa4, new_opcode("LOG4", 6, 0, 1875)); // closures opcodes.insert(0xf0, new_opcode("CREATE", 3, 1, 32000)); opcodes.insert(0xf1, new_opcode("CALL", 7, 1, 40)); opcodes.insert(0xf2, new_opcode("CALLCODE", 7, 1, 40)); opcodes.insert(0xf3, new_opcode("RETURN", 2, 0, 0)); opcodes.insert(0xf4, new_opcode("DELEGATECALL", 6, 0, 40)); opcodes.insert(0xff, new_opcode("SUICIDE", 1, 0, 0)); for i in 1..33 { let name = format!("PUSH{}", i); opcodes.insert(0x5f + i, new_opcode(&name, 0, 1, 3)); } for i in 1..17 { let name = format!("DUP{}", i); opcodes.insert(0x7f + i, new_opcode(&name, i as u32, i as u32 + 1, 3)); let name = format!("SWAP{}", i); opcodes.insert(0x8f + i, new_opcode(&name, i as u32 + 1, i as u32 + 1, 3)); } opcodes } impl Stack { // arithmetic // TODO instead of [u8;32] converted to BigUint, use custom type uint256 that implements all // the arithmetic pub fn add(&mut self) -> Result<(), String> { let b0 = BigUint::from_bytes_be(&self.pop()?[..]); let b1 = BigUint::from_bytes_be(&self.pop()?[..]); self.push_arbitrary(&(b0 + b1).to_bytes_be()); Ok(()) } pub fn mul(&mut self) -> Result<(), String> { let b0 = BigUint::from_bytes_be(&self.pop()?[..]); let b1 = BigUint::from_bytes_be(&self.pop()?[..]); self.push_arbitrary(&(b0 * b1).to_bytes_be()); Ok(()) } pub fn sub(&mut self) -> Result<(), String> { let b0 = BigUint::from_bytes_be(&self.pop()?[..]); let b1 = BigUint::from_bytes_be(&self.pop()?[..]); if b0 >= b1 { self.push_arbitrary(&(b0 - b1).to_bytes_be()); } else { // 2**256 TODO this will not be here hardcoded, there will be a custom type uint256 let max = "115792089237316195423570985008687907853269984665640564039457584007913129639936" .parse::() .unwrap(); self.push_arbitrary(&(max + b0 - b1).to_bytes_be()); } Ok(()) } pub fn div(&mut self) -> Result<(), String> { let b0 = BigUint::from_bytes_be(&self.pop()?[..]); let b1 = BigUint::from_bytes_be(&self.pop()?[..]); self.push_arbitrary(&(b0 / b1).to_bytes_be()); Ok(()) } pub fn sdiv(&mut self) -> Result<(), String> { Err(format!("unimplemented")) } pub fn modulus(&mut self) -> Result<(), String> { let b0 = BigUint::from_bytes_be(&self.pop()?[..]); let b1 = BigUint::from_bytes_be(&self.pop()?[..]); self.push_arbitrary(&(b0 % b1).to_bytes_be()); Ok(()) } pub fn smod(&mut self) -> Result<(), String> { Err(format!("unimplemented")) } pub fn add_mod(&mut self) -> Result<(), String> { let b0 = BigUint::from_bytes_be(&self.pop()?[..]); let b1 = BigUint::from_bytes_be(&self.pop()?[..]); let b2 = BigUint::from_bytes_be(&self.pop()?[..]); self.push_arbitrary(&(b0 + b1 % b2).to_bytes_be()); Ok(()) } pub fn mul_mod(&mut self) -> Result<(), String> { let b0 = BigUint::from_bytes_be(&self.pop()?[..]); let b1 = BigUint::from_bytes_be(&self.pop()?[..]); let b2 = BigUint::from_bytes_be(&self.pop()?[..]); self.push_arbitrary(&(b0 * b1 % b2).to_bytes_be()); Ok(()) } pub fn exp(&mut self) -> Result<(), String> { let b = BigUint::from_bytes_be(&self.pop()?[..]); let e = BigUint::from_bytes_be(&self.pop()?[..]); let mut r = "1".parse::().unwrap(); let zero = "0".parse::().unwrap(); let mut rem = e.clone(); let mut exp = b; // 2**256 TODO this will not be here hardcoded, there will be a custom type uint256 let field = "115792089237316195423570985008687907853269984665640564039457584007913129639936" .parse::() .unwrap(); while rem != zero { if rem.bit(0) { // is odd r = r * exp.clone() % field.clone(); } exp = exp.clone() * exp.clone(); rem >>= 1; } self.push_arbitrary(&r.to_bytes_be()); let n_bytes = &e.to_bytes_be().len(); let mut exp_fee = n_bytes * GEXPONENTBYTE; exp_fee += EXP_SUPPLEMENTAL_GAS * n_bytes; self.gas -= exp_fee as u64; Ok(()) } // boolean // crypto // contract context pub fn calldata_load(&mut self, calldata: &[u8]) { self.put_arbitrary(&calldata[self.calldata_i..self.calldata_i + self.calldata_size]); self.calldata_i += self.calldata_size; } pub fn calldata_size(&mut self, calldata: &[u8]) { self.calldata_size = calldata.len(); self.push(u256::usize_to_u256(self.calldata_size)); } fn spend_gas_data_copy(&mut self, length: usize) { let length32 = upper_multiple_of_32(length); self.gas -= ((GCOPY * length32) / 32) as u64; } pub fn code_copy(&mut self, code: &[u8]) -> Result<(), String> { let dest_offset = u256::u256_to_u64(self.pop()?) as usize; let offset = u256::u256_to_u64(self.pop()?) as usize; let length = u256::u256_to_u64(self.pop()?) as usize; self.extend_mem(dest_offset, length); self.spend_gas_data_copy(length); for i in 0..length { if offset + i < code.len() { self.mem[dest_offset + i] = code[offset + i]; } else { self.mem[dest_offset + i] = 0; } } // self.mem[dest_offset..dest_offset+length] = Ok(()) } // blockchain context // storage and execution pub fn extend_mem(&mut self, start: usize, size: usize) { if size <= self.mem.len() || start + size <= self.mem.len() { return; } let old_size = self.mem.len() / 32; let new_size = upper_multiple_of_32(start + size) / 32; let old_total_fee = old_size * GMEMORY + old_size.pow(2) / GQUADRATICMEMDENOM; let new_total_fee = new_size * GMEMORY + new_size.pow(2) / GQUADRATICMEMDENOM; let mem_fee = new_total_fee - old_total_fee; self.gas -= mem_fee as u64; let mut new_bytes: Vec = vec![0; (new_size - old_size) * 32]; self.mem.append(&mut new_bytes); } pub fn mload(&mut self) -> Result<(), String> { let pos = u256::u256_to_u64(self.pop()?) as usize; self.extend_mem(pos as usize, 32); let mem32 = self.mem[pos..pos + 32].to_vec(); self.push_arbitrary(&mem32); Ok(()) } pub fn mstore(&mut self) -> Result<(), String> { let pos = u256::u256_to_u64(self.pop()?); let val = self.pop()?; self.extend_mem(pos as usize, 32); self.mem[pos as usize..].copy_from_slice(&val); Ok(()) } pub fn sstore(&mut self) -> Result<(), String> { let key = self.pop()?; let value = self.pop()?; if self.storage.contains_key(&key) { let old_value = self.storage.get(&key).unwrap(); if &value.to_vec() == old_value { // if the new value is the same as the old one, do not set return Ok(()); } // if value (from self.pop()) does not exist in the stack, is a STORAGEKILL TODO println!("mingas {:?}", GSTORAGEMOD); self.gas -= GSTORAGEMOD as u64; } else { // if value does not exist, substract gas for the addition println!("mingas {:?}", GSTORAGEADD); self.gas -= GSTORAGEADD as u64; } println!( "insert {:?} - {:?}", vec_u8_to_hex(key.to_vec()), vec_u8_to_hex(value.to_vec()) ); self.storage.insert(key, value.to_vec()); Ok(()) } pub fn jump(&mut self) -> Result<(), String> { // TODO that jump destination is valid self.pc = u256::u256_to_u64(self.pop()?) as usize; Ok(()) } pub fn jump_i(&mut self) -> Result<(), String> { let new_pc = u256::u256_to_u64(self.pop()?) as usize; if !self.stack.is_empty() { let cond = u256::u256_to_u64(self.pop()?) as usize; if cond != 0 { self.pc = new_pc; } } // let cont = self.pop(); // if cont {} // TODO depends on having impl Err in pop() Ok(()) } pub fn jump_dest(&mut self) -> Result<(), String> { // TODO Ok(()) } } fn upper_multiple_of_32(n: usize) -> usize { ((n - 1) | 31) + 1 }