mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
ckks: get rid of constant generics (reason in two commits ago)
This commit is contained in:
@@ -3,12 +3,13 @@ use anyhow::Result;
|
||||
use arith::{Matrix, Ring, Rq, C, R};
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SecretKey<const Q: u64, const N: usize>(Rq<Q, N>);
|
||||
pub struct SecretKey(Rq);
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct PublicKey<const Q: u64, const N: usize>(Rq<Q, N>, Rq<Q, N>);
|
||||
pub struct PublicKey(Rq, Rq);
|
||||
|
||||
pub struct Encoder<const Q: u64, const N: usize> {
|
||||
pub struct Encoder {
|
||||
n: usize,
|
||||
scale_factor: C<f64>, // Δ (delta)
|
||||
primitive: C<f64>,
|
||||
basis: Matrix<C<f64>>,
|
||||
@@ -34,13 +35,14 @@ fn vandermonde(n: usize, w: C<f64>) -> Matrix<C<f64>> {
|
||||
}
|
||||
Matrix::<C<f64>>(v)
|
||||
}
|
||||
impl<const Q: u64, const N: usize> Encoder<Q, N> {
|
||||
pub fn new(scale_factor: C<f64>) -> Self {
|
||||
let primitive: C<f64> = primitive_root_of_unity(2 * N);
|
||||
let basis = vandermonde(N, primitive);
|
||||
impl Encoder {
|
||||
pub fn new(n: usize, scale_factor: C<f64>) -> Self {
|
||||
let primitive: C<f64> = primitive_root_of_unity(2 * n);
|
||||
let basis = vandermonde(n, primitive);
|
||||
let basis_t = basis.transpose();
|
||||
|
||||
Self {
|
||||
n,
|
||||
scale_factor,
|
||||
primitive,
|
||||
basis,
|
||||
@@ -52,7 +54,7 @@ impl<const Q: u64, const N: usize> Encoder<Q, N> {
|
||||
/// from $\mathbb{C}^{N/2} \longrightarrow \mathbb{Z_q}[X]/(X^N +1) = R$
|
||||
// TODO use alg.1 from 2018-1043,
|
||||
// or as in 2018-1073: $f(x) = 1N (U^T.conj() m + U^T m.conj())$
|
||||
pub fn encode(&self, z: &[C<f64>]) -> Result<R<N>> {
|
||||
pub fn encode(&self, z: &[C<f64>]) -> Result<R> {
|
||||
// $pi^{-1}: \mathbb{C}^{N/2} \longrightarrow \mathbb{H}$
|
||||
let expanded = self.pi_inv(z);
|
||||
|
||||
@@ -93,10 +95,10 @@ impl<const Q: u64, const N: usize> Encoder<Q, N> {
|
||||
|
||||
// TMP: naive round, maybe do gaussian
|
||||
let coeffs = r.iter().map(|e| e.re.round() as i64).collect::<Vec<i64>>();
|
||||
Ok(R::from_vec(coeffs))
|
||||
Ok(R::from_vec(self.n, coeffs))
|
||||
}
|
||||
|
||||
pub fn decode(&self, p: &R<N>) -> Result<Vec<C<f64>>> {
|
||||
pub fn decode(&self, p: &R) -> Result<Vec<C<f64>>> {
|
||||
let p: Vec<C<f64>> = p
|
||||
.coeffs()
|
||||
.iter()
|
||||
@@ -110,7 +112,7 @@ impl<const Q: u64, const N: usize> Encoder<Q, N> {
|
||||
|
||||
/// pi: \mathbb{H} \longrightarrow \mathbb{C}^{N/2}
|
||||
fn pi(&self, z: &[C<f64>]) -> Vec<C<f64>> {
|
||||
z[..N / 2].to_vec()
|
||||
z[..self.n / 2].to_vec()
|
||||
}
|
||||
/// pi^{-1}: \mathbb{C}^{N/2} \longrightarrow \mathbb{H}
|
||||
fn pi_inv(&self, z: &[C<f64>]) -> Vec<C<f64>> {
|
||||
@@ -154,6 +156,7 @@ mod tests {
|
||||
fn test_encode_decode() -> Result<()> {
|
||||
const Q: u64 = 1024;
|
||||
const N: usize = 32;
|
||||
let n: usize = 32;
|
||||
|
||||
let T = 128; // WIP
|
||||
let mut rng = rand::thread_rng();
|
||||
@@ -166,9 +169,9 @@ mod tests {
|
||||
.collect();
|
||||
|
||||
let delta = C::<f64>::new(64.0, 0.0); // delta = scaling factor
|
||||
let encoder = Encoder::<Q, N>::new(delta);
|
||||
let encoder = Encoder::new(n, delta);
|
||||
|
||||
let m: R<N> = encoder.encode(&z)?; // polynomial (encoded vec) \in R
|
||||
let m: R = encoder.encode(&z)?; // polynomial (encoded vec) \in R
|
||||
|
||||
let z_decoded = encoder.decode(&m)?;
|
||||
|
||||
|
||||
170
ckks/src/lib.rs
170
ckks/src/lib.rs
@@ -18,35 +18,48 @@ pub use encoder::Encoder;
|
||||
// sigma=3.2 from: https://eprint.iacr.org/2016/421.pdf page 17
|
||||
const ERR_SIGMA: f64 = 3.2;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct PublicKey<const Q: u64, const N: usize>(Rq<Q, N>, Rq<Q, N>);
|
||||
|
||||
pub struct SecretKey<const Q: u64, const N: usize>(Rq<Q, N>);
|
||||
|
||||
pub struct CKKS<const Q: u64, const N: usize> {
|
||||
encoder: Encoder<Q, N>,
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct Params {
|
||||
q: u64,
|
||||
n: usize,
|
||||
t: u64,
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> CKKS<Q, N> {
|
||||
pub fn new(delta: C<f64>) -> Self {
|
||||
let encoder = Encoder::<Q, N>::new(delta);
|
||||
Self { encoder }
|
||||
#[derive(Debug)]
|
||||
pub struct PublicKey(Rq, Rq);
|
||||
|
||||
pub struct SecretKey(Rq);
|
||||
|
||||
pub struct CKKS {
|
||||
params: Params,
|
||||
encoder: Encoder,
|
||||
}
|
||||
|
||||
impl CKKS {
|
||||
pub fn new(params: &Params, delta: C<f64>) -> Self {
|
||||
let encoder = Encoder::new(params.n, delta);
|
||||
Self {
|
||||
params: params.clone(),
|
||||
encoder,
|
||||
}
|
||||
}
|
||||
/// generate a new key pair (privK, pubK)
|
||||
pub fn new_key(&self, mut rng: impl Rng) -> Result<(SecretKey<Q, N>, PublicKey<Q, N>)> {
|
||||
pub fn new_key(&self, mut rng: impl Rng) -> Result<(SecretKey, PublicKey)> {
|
||||
let params = &self.params;
|
||||
|
||||
let Xi_key = Uniform::new(-1_f64, 1_f64);
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
|
||||
let e = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
let e = Rq::rand_f64(&mut rng, Xi_err, params.q, params.n)?;
|
||||
|
||||
let mut s = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
||||
let mut s = Rq::rand_f64(&mut rng, Xi_key, params.q, params.n)?;
|
||||
// since s is going to be multiplied by other Rq elements, already
|
||||
// compute its NTT
|
||||
s.compute_evals();
|
||||
|
||||
let a = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
||||
let a = Rq::rand_f64(&mut rng, Xi_key, params.q, params.n)?;
|
||||
|
||||
let pk: PublicKey<Q, N> = PublicKey((&(-a) * &s) + e, a.clone());
|
||||
let pk: PublicKey = PublicKey((&(-a.clone()) * &s) + e, a.clone()); // TODO rm clones
|
||||
Ok((SecretKey(s), pk))
|
||||
}
|
||||
|
||||
@@ -54,64 +67,54 @@ impl<const Q: u64, const N: usize> CKKS<Q, N> {
|
||||
fn encrypt(
|
||||
&self, // TODO maybe rm?
|
||||
mut rng: impl Rng,
|
||||
pk: &PublicKey<Q, N>,
|
||||
m: &R<N>,
|
||||
) -> Result<(Rq<Q, N>, Rq<Q, N>)> {
|
||||
pk: &PublicKey,
|
||||
m: &R,
|
||||
) -> Result<(Rq, Rq)> {
|
||||
let params = self.params;
|
||||
let Xi_key = Uniform::new(-1_f64, 1_f64);
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
|
||||
let e_0 = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
let e_1 = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
let e_0 = Rq::rand_f64(&mut rng, Xi_err, params.q, params.n)?;
|
||||
let e_1 = Rq::rand_f64(&mut rng, Xi_err, params.q, params.n)?;
|
||||
|
||||
let v = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
||||
let v = Rq::rand_f64(&mut rng, Xi_key, params.q, params.n)?;
|
||||
|
||||
let m: Rq<Q, N> = Rq::<Q, N>::from(*m);
|
||||
// let m: Rq = Rq::from(*m);
|
||||
let m: Rq = m.clone().to_rq(params.q); // TODO rm clone
|
||||
|
||||
Ok((m + e_0 + v * pk.0.clone(), v * pk.1.clone() + e_1))
|
||||
Ok((m + e_0 + &v * &pk.0.clone(), &v * &pk.1 + e_1))
|
||||
}
|
||||
|
||||
fn decrypt(
|
||||
&self, // TODO maybe rm?
|
||||
sk: &SecretKey<Q, N>,
|
||||
c: (Rq<Q, N>, Rq<Q, N>),
|
||||
) -> Result<R<N>> {
|
||||
let m = c.0.clone() + c.1 * sk.0;
|
||||
sk: &SecretKey,
|
||||
c: (Rq, Rq),
|
||||
) -> Result<R> {
|
||||
let m = c.0.clone() + &c.1 * &sk.0;
|
||||
Ok(m.mod_centered_q())
|
||||
}
|
||||
|
||||
pub fn encode_and_encrypt(
|
||||
&self,
|
||||
mut rng: impl Rng,
|
||||
pk: &PublicKey<Q, N>,
|
||||
pk: &PublicKey,
|
||||
z: &[C<f64>],
|
||||
) -> Result<(Rq<Q, N>, Rq<Q, N>)> {
|
||||
let m: R<N> = self.encoder.encode(&z)?; // polynomial (encoded vec) \in R
|
||||
) -> Result<(Rq, Rq)> {
|
||||
let m: R = self.encoder.encode(&z)?; // polynomial (encoded vec) \in R
|
||||
|
||||
self.encrypt(&mut rng, pk, &m)
|
||||
}
|
||||
|
||||
pub fn decrypt_and_decode(
|
||||
&self,
|
||||
sk: SecretKey<Q, N>,
|
||||
c: (Rq<Q, N>, Rq<Q, N>),
|
||||
) -> Result<Vec<C<f64>>> {
|
||||
pub fn decrypt_and_decode(&self, sk: SecretKey, c: (Rq, Rq)) -> Result<Vec<C<f64>>> {
|
||||
let d = self.decrypt(&sk, c)?;
|
||||
|
||||
self.encoder.decode(&d)
|
||||
}
|
||||
|
||||
pub fn add(
|
||||
&self,
|
||||
c0: &(Rq<Q, N>, Rq<Q, N>),
|
||||
c1: &(Rq<Q, N>, Rq<Q, N>),
|
||||
) -> Result<(Rq<Q, N>, Rq<Q, N>)> {
|
||||
pub fn add(&self, c0: &(Rq, Rq), c1: &(Rq, Rq)) -> Result<(Rq, Rq)> {
|
||||
Ok((&c0.0 + &c1.0, &c0.1 + &c1.1))
|
||||
}
|
||||
pub fn sub(
|
||||
&self,
|
||||
c0: &(Rq<Q, N>, Rq<Q, N>),
|
||||
c1: &(Rq<Q, N>, Rq<Q, N>),
|
||||
) -> Result<(Rq<Q, N>, Rq<Q, N>)> {
|
||||
pub fn sub(&self, c0: &(Rq, Rq), c1: &(Rq, Rq)) -> Result<(Rq, Rq)> {
|
||||
Ok((&c0.0 - &c1.0, &c0.1 + &c1.1))
|
||||
}
|
||||
}
|
||||
@@ -122,21 +125,22 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_encrypt_decrypt() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 32;
|
||||
const T: u64 = 50;
|
||||
let q: u64 = 2u64.pow(16) + 1;
|
||||
let n: usize = 32;
|
||||
let t: u64 = 50;
|
||||
let params = Params { q, n, t };
|
||||
let scale_factor_u64 = 512_u64; // delta
|
||||
let scale_factor = C::<f64>::new(scale_factor_u64 as f64, 0.0); // delta
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..1000 {
|
||||
let ckks = CKKS::<Q, N>::new(scale_factor);
|
||||
let ckks = CKKS::new(¶ms, scale_factor);
|
||||
|
||||
let (sk, pk) = ckks.new_key(&mut rng)?;
|
||||
|
||||
let m_raw: R<N> = Rq::<Q, N>::rand_f64(&mut rng, Uniform::new(0_f64, T as f64))?.to_r();
|
||||
let m = m_raw * scale_factor_u64;
|
||||
let m_raw: R = Rq::rand_f64(&mut rng, Uniform::new(0_f64, t as f64), q, n)?.to_r();
|
||||
let m = &m_raw * &scale_factor_u64;
|
||||
|
||||
let ct = ckks.encrypt(&mut rng, &pk, &m)?;
|
||||
let m_decrypted = ckks.decrypt(&sk, ct)?;
|
||||
@@ -146,8 +150,9 @@ mod tests {
|
||||
.iter()
|
||||
.map(|e| (*e as f64 / (scale_factor_u64 as f64)).round() as u64)
|
||||
.collect();
|
||||
let m_decrypted = Rq::<Q, N>::from_vec_u64(m_decrypted);
|
||||
assert_eq!(m_decrypted, Rq::<Q, N>::from(m_raw));
|
||||
let m_decrypted = Rq::from_vec_u64(q, n, m_decrypted);
|
||||
// assert_eq!(m_decrypted, Rq::from(m_raw));
|
||||
assert_eq!(m_decrypted, m_raw.to_rq(q));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
@@ -155,21 +160,22 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_encode_encrypt_decrypt_decode() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 16;
|
||||
const T: u64 = 8;
|
||||
let q: u64 = 2u64.pow(16) + 1;
|
||||
let n: usize = 16;
|
||||
let t: u64 = 8;
|
||||
let params = Params { q, n, t };
|
||||
let scale_factor = C::<f64>::new(512.0, 0.0); // delta
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..1000 {
|
||||
let ckks = CKKS::<Q, N>::new(scale_factor);
|
||||
let ckks = CKKS::new(¶ms, scale_factor);
|
||||
let (sk, pk) = ckks.new_key(&mut rng)?;
|
||||
|
||||
let z: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, T))
|
||||
.take(N / 2)
|
||||
let z: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, t))
|
||||
.take(n / 2)
|
||||
.collect();
|
||||
let m: R<N> = ckks.encoder.encode(&z)?;
|
||||
let m: R = ckks.encoder.encode(&z)?;
|
||||
println!("{}", m);
|
||||
|
||||
// sanity check
|
||||
@@ -200,26 +206,27 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_add() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 16;
|
||||
const T: u64 = 8;
|
||||
let q: u64 = 2u64.pow(16) + 1;
|
||||
let n: usize = 16;
|
||||
let t: u64 = 8;
|
||||
let params = Params { q, n, t };
|
||||
let scale_factor = C::<f64>::new(1024.0, 0.0); // delta
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..1000 {
|
||||
let ckks = CKKS::<Q, N>::new(scale_factor);
|
||||
let ckks = CKKS::new(¶ms, scale_factor);
|
||||
|
||||
let (sk, pk) = ckks.new_key(&mut rng)?;
|
||||
|
||||
let z0: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, T))
|
||||
.take(N / 2)
|
||||
let z0: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, t))
|
||||
.take(n / 2)
|
||||
.collect();
|
||||
let z1: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, T))
|
||||
.take(N / 2)
|
||||
let z1: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, t))
|
||||
.take(n / 2)
|
||||
.collect();
|
||||
let m0: R<N> = ckks.encoder.encode(&z0)?;
|
||||
let m1: R<N> = ckks.encoder.encode(&z1)?;
|
||||
let m0: R = ckks.encoder.encode(&z0)?;
|
||||
let m1: R = ckks.encoder.encode(&z1)?;
|
||||
|
||||
let ct0 = ckks.encrypt(&mut rng, &pk, &m0)?;
|
||||
let ct1 = ckks.encrypt(&mut rng, &pk, &m1)?;
|
||||
@@ -243,26 +250,27 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_sub() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 16;
|
||||
const T: u64 = 8;
|
||||
let q: u64 = 2u64.pow(16) + 1;
|
||||
let n: usize = 16;
|
||||
let t: u64 = 8;
|
||||
let params = Params { q, n, t };
|
||||
let scale_factor = C::<f64>::new(1024.0, 0.0); // delta
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..1000 {
|
||||
let ckks = CKKS::<Q, N>::new(scale_factor);
|
||||
let ckks = CKKS::new(¶ms, scale_factor);
|
||||
|
||||
let (sk, pk) = ckks.new_key(&mut rng)?;
|
||||
|
||||
let z0: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, T))
|
||||
.take(N / 2)
|
||||
let z0: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, t))
|
||||
.take(n / 2)
|
||||
.collect();
|
||||
let z1: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, T))
|
||||
.take(N / 2)
|
||||
let z1: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, t))
|
||||
.take(n / 2)
|
||||
.collect();
|
||||
let m0: R<N> = ckks.encoder.encode(&z0)?;
|
||||
let m1: R<N> = ckks.encoder.encode(&z1)?;
|
||||
let m0: R = ckks.encoder.encode(&z0)?;
|
||||
let m1: R = ckks.encoder.encode(&z1)?;
|
||||
|
||||
let ct0 = ckks.encrypt(&mut rng, &pk, &m0)?;
|
||||
let ct1 = ckks.encrypt(&mut rng, &pk, &m1)?;
|
||||
|
||||
Reference in New Issue
Block a user