mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
implement GLWE key switching
This commit is contained in:
77
arith/sage/ring.sage
Normal file
77
arith/sage/ring.sage
Normal file
@@ -0,0 +1,77 @@
|
||||
def run_test(a, b):
|
||||
print("\nnew test:")
|
||||
print(a)
|
||||
print(b)
|
||||
c = a*b
|
||||
print(c)
|
||||
print(c.list())
|
||||
|
||||
|
||||
|
||||
n_iters = 100
|
||||
Q= 65537
|
||||
print(Q)
|
||||
N=4
|
||||
F = GF(Q)
|
||||
R = QuotientRing(F[x], x^N + 1, names="X")
|
||||
print(R)
|
||||
|
||||
a = R([4,2,1,0])
|
||||
b = R([1,2,3,4])
|
||||
run_test(a,b)
|
||||
|
||||
|
||||
# print("Elements of the polynomial ring:")
|
||||
# for e in R:
|
||||
# print(e)
|
||||
|
||||
|
||||
# Other:
|
||||
# ======
|
||||
#
|
||||
# t = R.gen()
|
||||
# a = 0 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5
|
||||
# b = 5 + 4*t + 3*t^2 + 2*t^3 + 1*t^4 + 0*t^5
|
||||
# print("add", a+b)
|
||||
# print("sub", a-b)
|
||||
# print("mul", a*b)
|
||||
# a = 0 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5
|
||||
|
||||
# print("ring elem mul testvectors")
|
||||
#
|
||||
#
|
||||
# def randvec(size=N):return [int(random()*(Q-1)) for t in range(size)]
|
||||
#
|
||||
# a_vecs = [None]*n_iters
|
||||
# b_vecs = [None]*n_iters
|
||||
# c_vecs = [None]*n_iters
|
||||
#
|
||||
# for i in range(n_iters):
|
||||
# a_vec = randvec()
|
||||
# b_vec = randvec()
|
||||
# a_pol = R(a_vec)
|
||||
# b_pol = R(b_vec)
|
||||
#
|
||||
# c_pol = a_pol*b_pol
|
||||
#
|
||||
# a_vecs[i] = a_pol.list()
|
||||
# b_vecs[i] = b_pol.list()
|
||||
# c_vecs[i] = c_pol.list()
|
||||
#
|
||||
# print("let a_vecs = vec!{};\n".format(a_vecs))
|
||||
# print("let b_vecs = vec!{};\n".format(b_vecs))
|
||||
# print("let c_vecs = vec!{};".format(c_vecs))
|
||||
|
||||
|
||||
# # cyclotomic
|
||||
#
|
||||
# Q= 65537
|
||||
# print(Q)
|
||||
# N=4
|
||||
# F = GF(Q)
|
||||
# R = QuotientRing(F[x], x^N - 1, names="X")
|
||||
# print(R)
|
||||
#
|
||||
# a = R([1,0,0,2])
|
||||
# b = R([0,0,0,2])
|
||||
# run_test(a, b)
|
||||
@@ -31,6 +31,12 @@ impl<const N: usize> Ring for R<N> {
|
||||
// let coeffs: [C; N] = array::from_fn(|_| Zq::from_u64(dist.sample(&mut rng)));
|
||||
// Self(coeffs)
|
||||
}
|
||||
|
||||
// returns the decomposition of each polynomial coefficient
|
||||
fn decompose(&self, beta: u32, l: u32) -> Vec<Self> {
|
||||
unimplemented!();
|
||||
// array::from_fn(|i| self.coeffs[i].decompose(beta, l))
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> From<crate::ringq::Rq<Q, N>> for R<N> {
|
||||
|
||||
@@ -47,6 +47,18 @@ impl<const Q: u64, const N: usize> Ring for Rq<Q, N> {
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
|
||||
// returns the decomposition of each polynomial coefficient, such
|
||||
// decomposition will be a vecotor of length N, containint N vectors of Zq
|
||||
fn decompose(&self, beta: u32, l: u32) -> Vec<Self> {
|
||||
let elems: Vec<Vec<Zq<Q>>> = self.coeffs.iter().map(|r| r.decompose(beta, l)).collect();
|
||||
// transpose it
|
||||
let r: Vec<Vec<Zq<Q>>> = (0..elems[0].len())
|
||||
.map(|i| (0..elems.len()).map(|j| elems[j][i]).collect())
|
||||
.collect();
|
||||
// convert it to Rq<Q,N>
|
||||
r.iter().map(|a_i| Self::from_vec(a_i.clone())).collect()
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> From<crate::ring::R<N>> for Rq<Q, N> {
|
||||
@@ -599,4 +611,31 @@ mod tests {
|
||||
assert_eq!(c, expected_c);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_rq_decompose() -> Result<()> {
|
||||
const Q: u64 = 16;
|
||||
const N: usize = 4;
|
||||
let beta = 4;
|
||||
let l = 2;
|
||||
|
||||
let a = Rq::<Q, N>::from_vec_u64(vec![7u64, 14, 3, 6]);
|
||||
let d = a.decompose(beta, l);
|
||||
|
||||
assert_eq!(
|
||||
d[0],
|
||||
vec![1u64, 3, 0, 1]
|
||||
.iter()
|
||||
.map(|e| Zq::<Q>::from_u64(*e))
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
assert_eq!(
|
||||
d[1],
|
||||
vec![3u64, 2, 3, 2]
|
||||
.iter()
|
||||
.map(|e| Zq::<Q>::from_u64(*e))
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -27,4 +27,6 @@ pub trait Ring:
|
||||
fn zero() -> Self;
|
||||
// note/wip/warning: dist (0,q) with f64, will output more '0=q' elements than other values
|
||||
fn rand(rng: impl Rng, dist: impl Distribution<f64>) -> Self;
|
||||
|
||||
fn decompose(&self, beta: u32, l: u32) -> Vec<Self>;
|
||||
}
|
||||
|
||||
@@ -16,6 +16,9 @@ use crate::Ring;
|
||||
pub struct TR<R: Ring, const K: usize>(pub Vec<R>);
|
||||
|
||||
impl<R: Ring, const K: usize> TR<R, K> {
|
||||
pub fn zero() -> Self {
|
||||
Self((0..K).into_iter().map(|_| R::zero()).collect())
|
||||
}
|
||||
pub fn rand(mut rng: impl Rng, dist: impl Distribution<f64>) -> Self {
|
||||
Self(
|
||||
(0..K)
|
||||
@@ -24,6 +27,11 @@ impl<R: Ring, const K: usize> TR<R, K> {
|
||||
.collect(),
|
||||
)
|
||||
}
|
||||
// returns the decomposition of each polynomial element
|
||||
pub fn decompose(&self, beta: u32, l: u32) -> Vec<Self> {
|
||||
unimplemented!()
|
||||
// self.0.iter().map(|r| r.decompose(beta, l)).collect() // this is Vec<Vec<Vec<R::C>>>
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: Ring, const K: usize> ops::Add<TR<R, K>> for TR<R, K> {
|
||||
|
||||
@@ -3,7 +3,7 @@ use rand::{distributions::Distribution, Rng};
|
||||
use std::fmt;
|
||||
use std::ops;
|
||||
|
||||
// Z_q, integers modulus q, not necessarily prime
|
||||
/// Z_q, integers modulus q, not necessarily prime
|
||||
#[derive(Clone, Copy, PartialEq)]
|
||||
pub struct Zq<const Q: u64>(pub u64);
|
||||
|
||||
@@ -130,6 +130,28 @@ impl<const Q: u64> Zq<Q> {
|
||||
pub fn mod_switch<const Q2: u64>(&self) -> Zq<Q2> {
|
||||
Zq::<Q2>::from_u64(((self.0 as f64 * Q2 as f64) / Q as f64).round() as u64)
|
||||
}
|
||||
|
||||
// TODO more efficient method for when decomposing with base 2 (beta=2)
|
||||
pub fn decompose(&self, beta: u32, l: u32) -> Vec<Self> {
|
||||
let mut rem: u64 = self.0;
|
||||
// next if is for cases in which beta does not divide Q (concretely
|
||||
// beta^l!=Q). round to the nearest multiple of q/beta^l
|
||||
if rem >= beta.pow(l) as u64 {
|
||||
// rem = Q - 1 - (Q / beta as u64); // floor
|
||||
return vec![Zq(beta as u64 - 1); l as usize];
|
||||
}
|
||||
|
||||
let mut x: Vec<Self> = vec![];
|
||||
for i in 1..l + 1 {
|
||||
let den = Q / beta.pow(i) as u64;
|
||||
let x_i = rem / den; // division between u64 already does floor
|
||||
x.push(Self::from_u64(x_i));
|
||||
if x_i != 0 {
|
||||
rem = rem % den;
|
||||
}
|
||||
}
|
||||
x
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64> Zq<Q> {
|
||||
@@ -243,6 +265,7 @@ impl<const Q: u64> fmt::Debug for Zq<Q> {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use rand::distributions::Uniform;
|
||||
|
||||
#[test]
|
||||
fn exp() {
|
||||
@@ -262,4 +285,62 @@ mod tests {
|
||||
let b = Zq::<Q>::from_f64(-1.0);
|
||||
assert_eq!(-a, a * b);
|
||||
}
|
||||
|
||||
fn recompose<const Q: u64>(beta: u32, l: u32, d: Vec<Zq<Q>>) -> Zq<Q> {
|
||||
let mut x = 0u64;
|
||||
for i in 0..l {
|
||||
x += d[i as usize].0 * Q / beta.pow(i + 1) as u64;
|
||||
}
|
||||
Zq::from_u64(x)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_decompose() {
|
||||
const Q1: u64 = 16;
|
||||
let beta: u32 = 2;
|
||||
let l: u32 = 4;
|
||||
let x = Zq::<Q1>::from_u64(9);
|
||||
let d = x.decompose(beta, l);
|
||||
|
||||
assert_eq!(recompose::<Q1>(beta, l, d), x);
|
||||
|
||||
const Q: u64 = 5u64.pow(3);
|
||||
let beta: u32 = 5;
|
||||
let l: u32 = 3;
|
||||
|
||||
let dist = Uniform::new(0_u64, Q);
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..1000 {
|
||||
let x = Zq::<Q>::from_u64(dist.sample(&mut rng));
|
||||
|
||||
let d = x.decompose(beta, l);
|
||||
|
||||
assert_eq!(recompose::<Q>(beta, l, d), x);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_decompose_approx() {
|
||||
const Q: u64 = 2u64.pow(4) + 1;
|
||||
let beta: u32 = 2;
|
||||
let l: u32 = 4;
|
||||
let x = Zq::<Q>::from_u64(16); // in q, but bigger than beta^l
|
||||
let d = x.decompose(beta, l);
|
||||
assert_eq!(recompose::<Q>(beta, l, d), Zq(15));
|
||||
|
||||
const Q2: u64 = 5u64.pow(3) + 1;
|
||||
let beta: u32 = 5;
|
||||
let l: u32 = 3;
|
||||
let x = Zq::<Q2>::from_u64(125); // in q, but bigger than beta^l
|
||||
let d = x.decompose(beta, l);
|
||||
assert_eq!(recompose::<Q2>(beta, l, d), Zq(124));
|
||||
|
||||
const Q3: u64 = 2u64.pow(16) + 1;
|
||||
let beta: u32 = 2;
|
||||
let l: u32 = 16;
|
||||
let x = Zq::<Q3>::from_u64(Q3 - 1); // in q, but bigger than beta^l
|
||||
let d = x.decompose(beta, l);
|
||||
assert_eq!(recompose::<Q3>(beta, l, d), Zq(beta.pow(l) as u64 - 1));
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user