mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
mv arithmetic arith
This commit is contained in:
196
arith/src/naive_ntt.rs
Normal file
196
arith/src/naive_ntt.rs
Normal file
@@ -0,0 +1,196 @@
|
||||
//! this file implements the non-efficient NTT, which uses multiplication by the
|
||||
//! Vandermonde matrix.
|
||||
use crate::zq::Zq;
|
||||
|
||||
use anyhow::{Result, anyhow};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct NTT<const Q: u64, const N: usize> {
|
||||
pub primitive: Zq<Q>,
|
||||
// nth_roots: Vec<Zq<Q>>,
|
||||
pub ntt: Vec<Vec<Zq<Q>>>,
|
||||
pub intt: Vec<Vec<Zq<Q>>>,
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> NTT<Q, N> {
|
||||
pub fn new() -> Result<Self> {
|
||||
// TODO change n to be u64 and ensure that is n<Q
|
||||
// note: `n` here is not the `N` from `(X^N+1)`
|
||||
// TODO: in fact n will be N (trait/struct param)
|
||||
|
||||
// let primitive = Self::get_primitive_root_of_unity((2 * N) as u64)?;
|
||||
let primitive = Self::get_primitive_root_of_unity((2 * N) as u64)?;
|
||||
// let mut nth_roots = vec![Zq(0); N];
|
||||
// let mut w_i = Zq(1);
|
||||
// for i in 0..N {
|
||||
// w_i = w_i * primitive;
|
||||
// nth_roots[i] = w_i;
|
||||
// }
|
||||
let ntt: Vec<Vec<Zq<Q>>> = Self::vandermonde(primitive);
|
||||
let intt = Self::invert_vandermonde(&ntt);
|
||||
Ok(Self {
|
||||
primitive,
|
||||
// nth_roots,
|
||||
ntt,
|
||||
intt,
|
||||
})
|
||||
}
|
||||
pub fn vandermonde(primitive: Zq<Q>) -> Vec<Vec<Zq<Q>>> {
|
||||
let mut v: Vec<Vec<Zq<Q>>> = vec![];
|
||||
let n = (2 * N) as u64;
|
||||
// let n = N as u64;
|
||||
for i in 0..n {
|
||||
let mut row: Vec<Zq<Q>> = vec![];
|
||||
let primitive_i = primitive.exp(Zq(i));
|
||||
let mut primitive_ij = Zq(1);
|
||||
for _ in 0..n {
|
||||
row.push(primitive_ij);
|
||||
primitive_ij = primitive_ij * primitive_i;
|
||||
}
|
||||
v.push(row);
|
||||
}
|
||||
v
|
||||
}
|
||||
// specifically for the Vandermonde matrix
|
||||
pub fn invert_vandermonde(v: &Vec<Vec<Zq<Q>>>) -> Vec<Vec<Zq<Q>>> {
|
||||
let n = 2 * N;
|
||||
// let n = N;
|
||||
let mut inv: Vec<Vec<Zq<Q>>> = vec![];
|
||||
for i in 0..n {
|
||||
let w_i = v[i][1]; // = w_i^1=w^i^1 = w^i
|
||||
let w_i_inv = w_i.inv();
|
||||
let mut row: Vec<Zq<Q>> = vec![];
|
||||
for j in 0..n {
|
||||
row.push(w_i_inv.exp(Zq(j as u64)) / Zq(n as u64));
|
||||
}
|
||||
inv.push(row);
|
||||
}
|
||||
inv
|
||||
}
|
||||
|
||||
pub fn get_primitive_root_of_unity(n: u64) -> Result<Zq<Q>> {
|
||||
// using the method described by Thomas Pornin in
|
||||
// https://crypto.stackexchange.com/a/63616
|
||||
|
||||
// assert!((Q - 1) % N as u64 == 0);
|
||||
assert!((Q - 1) % n == 0);
|
||||
|
||||
// TODO maybe not using Zq and using u64 directly
|
||||
let n = Zq(n);
|
||||
for k in 0..Q {
|
||||
if k == 0 {
|
||||
continue;
|
||||
}
|
||||
let g = Zq(k);
|
||||
// g = F.random_element()
|
||||
if g == Zq(0) {
|
||||
continue;
|
||||
}
|
||||
let w = g.exp((-Zq(1)) / n);
|
||||
if w.exp(n / Zq(2)) != Zq(1) {
|
||||
// g is the generator
|
||||
return Ok(w);
|
||||
}
|
||||
}
|
||||
Err(anyhow!("can not find the primitive root of unity"))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use rand_distr::Uniform;
|
||||
|
||||
use crate::ring::Rq;
|
||||
use crate::ring::matrix_vec_product;
|
||||
|
||||
#[test]
|
||||
fn roots_of_unity() -> Result<()> {
|
||||
const Q: u64 = 12289;
|
||||
const N: usize = 512;
|
||||
let _ntt = NTT::<Q, N>::new()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn vandermonde_ntt() -> Result<()> {
|
||||
const Q: u64 = 41;
|
||||
const N: usize = 4;
|
||||
let primitive = NTT::<Q, N>::get_primitive_root_of_unity((2 * N) as u64)?;
|
||||
let v = NTT::<Q, N>::vandermonde(primitive);
|
||||
|
||||
// naively compute the Vandermonde matrix, and assert that the one from the method matches
|
||||
// the naively obtained one
|
||||
let n2 = (2 * N) as u64;
|
||||
let mut v2: Vec<Vec<Zq<Q>>> = vec![];
|
||||
for i in 0..n2 {
|
||||
let mut row: Vec<Zq<Q>> = vec![];
|
||||
for j in 0..n2 {
|
||||
row.push(primitive.exp(Zq(i * j)));
|
||||
}
|
||||
v2.push(row);
|
||||
}
|
||||
assert_eq!(v, v2);
|
||||
|
||||
let v_inv = NTT::<Q, N>::invert_vandermonde(&v);
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
let uniform_distr = Uniform::new(0_f64, Q as f64);
|
||||
let a = Rq::<Q, N>::rand_f64(&mut rng, uniform_distr)?;
|
||||
// let a = PR::<Q, N>::new_from_u64(vec![36, 21, 9, 19]);
|
||||
|
||||
// let a_padded_coeffs: [Zq<Q>; 2 * N] =
|
||||
// std::array::from_fn(|i| if i < N { a.coeffs[i] } else { Zq::zero() });
|
||||
let mut a_padded = a.coeffs.to_vec();
|
||||
a_padded.append(&mut vec![Zq(0); N]);
|
||||
// let a_ntt = a_padded.mul_by_matrix(&v)?;
|
||||
let a_ntt = matrix_vec_product(&v, &a_padded)?;
|
||||
let a_intt: Vec<Zq<Q>> = matrix_vec_product(&v_inv, &a_ntt)?;
|
||||
assert_eq!(a_intt, a_padded);
|
||||
let a_intt_arr: [Zq<Q>; N] = std::array::from_fn(|i| a_intt[i]);
|
||||
assert_eq!(Rq::new(a_intt_arr, None), a);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn vec_by_ntt() -> Result<()> {
|
||||
const Q: u64 = 257;
|
||||
const N: usize = 4;
|
||||
// let primitive = NTT::<Q, N>::get_primitive_root_of_unity((2*N) as u64)?;
|
||||
let ntt = NTT::<Q, N>::new()?;
|
||||
|
||||
let a: Vec<Zq<Q>> = vec![256, 256, 256, 256, 0, 0, 0, 0]
|
||||
.iter()
|
||||
.map(|&e| Zq::from_u64(e))
|
||||
.collect();
|
||||
let a_ntt = matrix_vec_product(&ntt.ntt, &a)?;
|
||||
let a_intt = matrix_vec_product(&ntt.intt, &a_ntt)?;
|
||||
assert_eq!(a_intt, a);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bench_ntt() -> Result<()> {
|
||||
// const Q: u64 = 12289;
|
||||
// const N: usize = 512;
|
||||
const Q: u64 = 257;
|
||||
const N: usize = 4;
|
||||
// let primitive = NTT::<Q, N>::get_primitive_root_of_unity((2*N) as u64)?;
|
||||
let ntt = NTT::<Q, N>::new()?;
|
||||
|
||||
let rng = rand::thread_rng();
|
||||
let a = Rq::<Q, { 2 * N }>::rand_f64(rng, Uniform::new(0_f64, (Q - 1) as f64))?;
|
||||
let a = a.coeffs;
|
||||
dbg!(&a);
|
||||
let a_ntt = matrix_vec_product(&ntt.ntt, &a.to_vec())?;
|
||||
dbg!(&a_ntt);
|
||||
let a_intt = matrix_vec_product(&ntt.intt, &a_ntt)?;
|
||||
dbg!(&a_intt);
|
||||
assert_eq!(a_intt, a);
|
||||
// TODO bench
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user