mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
mv arithmetic arith
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
[workspace]
|
||||
members = [
|
||||
"bfv",
|
||||
"arithmetic"
|
||||
"arith"
|
||||
]
|
||||
|
||||
resolver = "2"
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[package]
|
||||
name = "arithmetic"
|
||||
name = "arith"
|
||||
version = "0.1.0"
|
||||
edition = "2024"
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
//! Vandermonde matrix.
|
||||
use crate::zq::Zq;
|
||||
|
||||
use anyhow::{anyhow, Result};
|
||||
use anyhow::{Result, anyhow};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct NTT<const Q: u64, const N: usize> {
|
||||
@@ -101,8 +101,8 @@ mod tests {
|
||||
use super::*;
|
||||
use rand_distr::Uniform;
|
||||
|
||||
use crate::ring::matrix_vec_product;
|
||||
use crate::ring::Rq;
|
||||
use crate::ring::matrix_vec_product;
|
||||
|
||||
#[test]
|
||||
fn roots_of_unity() -> Result<()> {
|
||||
@@ -1,8 +1,8 @@
|
||||
//! Polynomial ring Z[X]/(X^N+1)
|
||||
//!
|
||||
|
||||
use anyhow::{anyhow, Result};
|
||||
use rand::{distributions::Distribution, Rng};
|
||||
use anyhow::{Result, anyhow};
|
||||
use rand::{Rng, distributions::Distribution};
|
||||
use std::array;
|
||||
use std::fmt;
|
||||
use std::ops;
|
||||
@@ -1,14 +1,14 @@
|
||||
//! Polynomial ring Z_q[X]/(X^N+1)
|
||||
//!
|
||||
|
||||
use rand::{distributions::Distribution, Rng};
|
||||
use rand::{Rng, distributions::Distribution};
|
||||
use std::array;
|
||||
use std::fmt;
|
||||
use std::ops;
|
||||
|
||||
use crate::ntt::NTT;
|
||||
use crate::zq::{modulus_u64, Zq};
|
||||
use anyhow::{anyhow, Result};
|
||||
use crate::zq::{Zq, modulus_u64};
|
||||
use anyhow::{Result, anyhow};
|
||||
|
||||
/// PolynomialRing element, where the PolynomialRing is R = Z_q[X]/(X^n +1)
|
||||
/// The implementation assumes that q is prime.
|
||||
@@ -44,11 +44,7 @@ impl<const Q: u64> Zq<Q> {
|
||||
// Zq(e as u64)
|
||||
}
|
||||
pub fn from_bool(b: bool) -> Self {
|
||||
if b {
|
||||
Zq(1)
|
||||
} else {
|
||||
Zq(0)
|
||||
}
|
||||
if b { Zq(1) } else { Zq(0) }
|
||||
}
|
||||
pub fn zero() -> Self {
|
||||
Zq(0u64)
|
||||
@@ -9,4 +9,4 @@ rand = { workspace = true }
|
||||
rand_distr = { workspace = true }
|
||||
itertools = { workspace = true }
|
||||
|
||||
arithmetic = { path="../arithmetic" }
|
||||
arith = { path="../arith" }
|
||||
|
||||
@@ -5,12 +5,12 @@
|
||||
#![allow(clippy::upper_case_acronyms)]
|
||||
#![allow(dead_code)] // TMP
|
||||
|
||||
use anyhow::{anyhow, Result};
|
||||
use anyhow::{Result, anyhow};
|
||||
use rand::Rng;
|
||||
use rand_distr::{Normal, Uniform};
|
||||
use std::ops;
|
||||
|
||||
use arithmetic::{Rq, R};
|
||||
use arith::{R, Rq};
|
||||
|
||||
// error deviation for the Gaussian(Normal) distribution
|
||||
// sigma=3.2 from: https://eprint.iacr.org/2022/162.pdf page 5
|
||||
@@ -57,7 +57,7 @@ impl<const Q: u64, const N: usize> RLWE<Q, N> {
|
||||
let b1: R<N> = b.1.to_r();
|
||||
|
||||
// tensor (\in R) (2021-204 p.9)
|
||||
use arithmetic::ring::naive_mul;
|
||||
use arith::ring::naive_mul;
|
||||
// (here can use *, but want to make it explicit that we're using the naive mul)
|
||||
let c0: Vec<i64> = naive_mul(&a0, &b0);
|
||||
let c1_l: Vec<i64> = naive_mul(&a0, &b1);
|
||||
@@ -66,9 +66,9 @@ impl<const Q: u64, const N: usize> RLWE<Q, N> {
|
||||
let c2: Vec<i64> = naive_mul(&a1, &b1);
|
||||
|
||||
// scale down, then reduce module Q, so result is \in R_q
|
||||
let c0: Rq<Q, N> = arithmetic::ring::mul_div_round::<Q, N>(c0, T, Q);
|
||||
let c1: Rq<Q, N> = arithmetic::ring::mul_div_round::<Q, N>(c1, T, Q);
|
||||
let c2: Rq<Q, N> = arithmetic::ring::mul_div_round::<Q, N>(c2, T, Q);
|
||||
let c0: Rq<Q, N> = arith::ring::mul_div_round::<Q, N>(c0, T, Q);
|
||||
let c1: Rq<Q, N> = arith::ring::mul_div_round::<Q, N>(c1, T, Q);
|
||||
let c2: Rq<Q, N> = arith::ring::mul_div_round::<Q, N>(c2, T, Q);
|
||||
|
||||
(c0, c1, c2)
|
||||
}
|
||||
@@ -106,7 +106,7 @@ impl<const Q: u64, const N: usize> RLWE<Q, N> {
|
||||
}
|
||||
// naive mul in the ring Rq, reusing the ring::naive_mul and then applying mod(X^N +1)
|
||||
fn tmp_naive_mul<const Q: u64, const N: usize>(a: Rq<Q, N>, b: Rq<Q, N>) -> Rq<Q, N> {
|
||||
Rq::<Q, N>::from_vec_i64(arithmetic::ring::naive_mul(&a.to_r(), &b.to_r()))
|
||||
Rq::<Q, N>::from_vec_i64(arith::ring::naive_mul(&a.to_r(), &b.to_r()))
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> ops::Add<RLWE<Q, N>> for RLWE<Q, N> {
|
||||
@@ -196,7 +196,7 @@ impl<const Q: u64, const N: usize, const T: u64> BFV<Q, N, T> {
|
||||
let cs = c.0 + c.1 * sk.0; // done in mod q
|
||||
|
||||
// let c1s = tmp_naive_mul(c.1, sk.0);
|
||||
// // let c1s = arithmetic::ring::naive_mul(&c.1.to_r(), &sk.0.to_r()); // TODO rm
|
||||
// // let c1s = arith::ring::naive_mul(&c.1.to_r(), &sk.0.to_r()); // TODO rm
|
||||
// // let c1s = Rq::<Q, N>::from_vec_i64(c1s);
|
||||
// let cs = c.0 + c1s;
|
||||
|
||||
@@ -293,12 +293,12 @@ impl<const Q: u64, const N: usize, const T: u64> BFV<Q, N, T> {
|
||||
// let c2 = c2.to_r();
|
||||
|
||||
// let c2rlk0: Vec<f64> = (c2.remodule::<PQ>() * rlk.0)
|
||||
use arithmetic::ring::naive_mul;
|
||||
use arith::ring::naive_mul;
|
||||
let c2rlk0: Vec<i64> = naive_mul(&c2.to_r(), &rlk.0.to_r());
|
||||
let c2rlk1: Vec<i64> = naive_mul(&c2.to_r(), &rlk.1.to_r());
|
||||
|
||||
let r0: Rq<Q, N> = arithmetic::ring::mul_div_round::<Q, N>(c2rlk0, 1, P);
|
||||
let r1: Rq<Q, N> = arithmetic::ring::mul_div_round::<Q, N>(c2rlk1, 1, P);
|
||||
let r0: Rq<Q, N> = arith::ring::mul_div_round::<Q, N>(c2rlk0, 1, P);
|
||||
let r1: Rq<Q, N> = arith::ring::mul_div_round::<Q, N>(c2rlk1, 1, P);
|
||||
|
||||
// let r0 = Rq::<Q, N>::from_vec_f64(c2rlk0);
|
||||
// let r1 = Rq::<Q, N>::from_vec_f64(c2rlk1);
|
||||
@@ -409,7 +409,7 @@ mod tests {
|
||||
fn test_tensor() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1; // q prime, and 2^q + 1 shape
|
||||
const N: usize = 32;
|
||||
const T: u64 = 8; // plaintext modulus
|
||||
const T: u64 = 2; // plaintext modulus
|
||||
|
||||
// const P: u64 = Q;
|
||||
const P: u64 = Q * Q;
|
||||
@@ -442,10 +442,10 @@ mod tests {
|
||||
// decrypt non-relinearized mul result
|
||||
let m3: Rq<Q, N> = c_a + c_b * sk.0 + c_c * sk.0 * sk.0;
|
||||
// let m3: Rq<Q, N> = c_a
|
||||
// + Rq::<Q, N>::from_vec_i64(arithmetic::ring::naive_mul(&c_b.to_r(), &sk.0.to_r()))
|
||||
// + Rq::<Q, N>::from_vec_i64(arithmetic::ring::naive_mul(
|
||||
// + Rq::<Q, N>::from_vec_i64(arith::ring::naive_mul(&c_b.to_r(), &sk.0.to_r()))
|
||||
// + Rq::<Q, N>::from_vec_i64(arith::ring::naive_mul(
|
||||
// &c_c.to_r(),
|
||||
// &R::<N>::from_vec(arithmetic::ring::naive_mul(&sk.0.to_r(), &sk.0.to_r())),
|
||||
// &R::<N>::from_vec(arith::ring::naive_mul(&sk.0.to_r(), &sk.0.to_r())),
|
||||
// ));
|
||||
let m3: Rq<Q, N> = m3.mul_div_round(T, Q); // descale
|
||||
let m3 = m3.remodule::<T>();
|
||||
@@ -543,7 +543,9 @@ mod tests {
|
||||
let m3 = BFV::<Q, N, T>::decrypt(&sk, &c3);
|
||||
|
||||
let naive = (m1.to_r() * m2.to_r()).to_rq::<T>();
|
||||
assert_eq!(m3.coeffs().to_vec(), naive.coeffs().to_vec(),
|
||||
assert_eq!(
|
||||
m3.coeffs().to_vec(),
|
||||
naive.coeffs().to_vec(),
|
||||
"\n\nfor testing:\nlet m1 = Rq::<T, N>::from_vec_u64(vec!{:?});\nlet m2 = Rq::<T, N>::from_vec_u64(vec!{:?});\n",
|
||||
m1.coeffs(),
|
||||
m2.coeffs()
|
||||
|
||||
Reference in New Issue
Block a user