Browse Source

generalized-fhe: add GLWE encryption & decryption

gfhe-over-ring-trait
arnaucube 1 month ago
parent
commit
2998f1761c
8 changed files with 142 additions and 3 deletions
  1. +1
    -0
      Cargo.toml
  2. +1
    -0
      README.md
  3. +3
    -0
      arith/src/ringq.rs
  4. +0
    -3
      arith/src/tuple_ring.rs
  5. +12
    -0
      generalized-fhe/Cargo.toml
  6. +2
    -0
      generalized-fhe/README.md
  7. +115
    -0
      generalized-fhe/src/glwe.rs
  8. +8
    -0
      generalized-fhe/src/lib.rs

+ 1
- 0
Cargo.toml

@ -1,6 +1,7 @@
[workspace]
members = [
"arith",
"generalized-fhe",
"bfv",
"ckks"
]

+ 1
- 0
README.md

@ -2,5 +2,6 @@
Implementations from scratch done while studying some FHE papers; do not use in production.
- `arith`: contains $\mathbb{Z}_q$, $R_q=\mathbb{Z}_q[X]/(X^N+1)$ and $R=\mathbb{Z}[X]/(X^N+1)$ arithmetic implementations, together with the NTT implementation.
- `generalized-fhe`: contains the structs and logic for RLWE, GLWE, GLev, GGSW, RGSW cryptosystems, which can be used by concrete FHE schemes.
- `bfv`: https://eprint.iacr.org/2012/144.pdf scheme implementation
- `ckks`: https://eprint.iacr.org/2016/421.pdf scheme implementation

+ 3
- 0
arith/src/ringq.rs

@ -13,6 +13,9 @@ use anyhow::{anyhow, Result};
use crate::Ring;
// NOTE: currently using fixed-size arrays, but pending to see if with
// real-world parameters the stack can keep up; if not will move everything to
// use Vec.
/// PolynomialRing element, where the PolynomialRing is R = Z_q[X]/(X^n +1)
/// The implementation assumes that q is prime.
#[derive(Clone, Copy)]

+ 0
- 3
arith/src/tuple_ring.rs

@ -10,9 +10,6 @@ use std::{array, ops};
use crate::Ring;
// #[derive(Clone, Copy, Debug)]
// pub struct TR<R: Ring, const K: usize>([R; K]);
/// Tuple of K Ring (Rq) elements. We use Vec<R> to allocate it in the heap,
/// since if using a fixed-size array it would overflow the stack.
#[derive(Clone, Debug)]

+ 12
- 0
generalized-fhe/Cargo.toml

@ -0,0 +1,12 @@
[package]
name = "generalized-fhe"
version = "0.1.0"
edition = "2024"
[dependencies]
anyhow = { workspace = true }
rand = { workspace = true }
rand_distr = { workspace = true }
itertools = { workspace = true }
arith = { path="../arith" }

+ 2
- 0
generalized-fhe/README.md

@ -0,0 +1,2 @@
# common
Contains the structs and logic for RLWE, GLWE, GLev, GGSW, RGSW cryptosystems, which can be used by concrete FHE schemes.

+ 115
- 0
generalized-fhe/src/glwe.rs

@ -0,0 +1,115 @@
use anyhow::Result;
use itertools::zip_eq;
use rand::Rng;
use rand_distr::{Normal, Uniform};
use std::{array, ops};
use arith::{Ring, Rq, R, TR};
const ERR_SIGMA: f64 = 3.2;
pub struct GLWE<const Q: u64, const N: usize, const K: usize>(TR<Rq<Q, N>, K>, Rq<Q, N>);
#[derive(Clone, Debug)]
pub struct SecretKey<const Q: u64, const N: usize, const K: usize>(TR<Rq<Q, N>, K>);
#[derive(Clone, Debug)]
pub struct PublicKey<const Q: u64, const N: usize, const K: usize>(Rq<Q, N>, TR<Rq<Q, N>, K>);
impl<const Q: u64, const N: usize, const K: usize> GLWE<Q, N, K> {
pub fn new_key(mut rng: impl Rng) -> Result<(SecretKey<Q, N, K>, PublicKey<Q, N, K>)> {
let Xi_key = Uniform::new(0_f64, 2_f64);
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
let s: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Xi_key);
let a: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Uniform::new(0_f64, Q as f64));
let e = Rq::<Q, N>::rand(&mut rng, Xi_err);
let pk: PublicKey<Q, N, K> = PublicKey((&a * &s) + e, a);
Ok((SecretKey(s), pk))
}
// TODO delta not as input
pub fn encrypt_s<const T: u64>(
mut rng: impl Rng,
sk: &SecretKey<Q, N, K>,
m: &Rq<T, N>,
delta: u64,
) -> Result<Self> {
let m: Rq<Q, N> = m.remodule::<Q>();
let Xi_key = Uniform::new(0_f64, 2_f64);
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
let a: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Xi_key);
let e = Rq::<Q, N>::rand(&mut rng, Xi_err);
let b: Rq<Q, N> = (&a * &sk.0) + m * delta + e;
Ok(Self(a, b))
}
pub fn encrypt<const T: u64>(
mut rng: impl Rng,
pk: &PublicKey<Q, N, K>,
m: &Rq<T, N>,
delta: u64,
) -> Result<Self> {
let m: Rq<Q, N> = m.remodule::<Q>();
let Xi_key = Uniform::new(0_f64, 2_f64);
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
let u: Rq<Q, N> = Rq::rand(&mut rng, Xi_key);
let e0 = Rq::<Q, N>::rand(&mut rng, Xi_err);
let e1 = TR::<Rq<Q, N>, K>::rand(&mut rng, Xi_err);
let b: Rq<Q, N> = pk.0 * u + m * delta + e0;
let d: TR<Rq<Q, N>, K> = &pk.1 * &u + e1;
Ok(Self(d, b))
}
pub fn decrypt<const T: u64>(&self, sk: &SecretKey<Q, N, K>, delta: u64) -> Rq<T, N> {
let (d, b): (TR<Rq<Q, N>, K>, Rq<Q, N>) = (self.0.clone(), self.1);
let r: Rq<Q, N> = b - &d * &sk.0;
let r_scaled: Vec<f64> = r
.coeffs()
.iter()
.map(|e| (e.0 as f64 / delta as f64).round())
.collect();
let r = Rq::<Q, N>::from_vec_f64(r_scaled);
r.remodule::<T>()
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use rand::distributions::Uniform;
use super::*;
#[test]
fn test_encrypt_decrypt() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 128;
const T: u64 = 32; // plaintext modulus
const K: usize = 16;
type S = GLWE<Q, N, K>;
let delta: u64 = Q / T; // floored
let mut rng = rand::thread_rng();
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let msg_dist = Uniform::new(0_u64, T);
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let c = S::encrypt(&mut rng, &pk, &m, delta)?;
let m_recovered = c.decrypt(&sk, delta);
assert_eq!(m, m_recovered);
}
Ok(())
}
}

+ 8
- 0
generalized-fhe/src/lib.rs

@ -0,0 +1,8 @@
//! Implementation of BFV https://eprint.iacr.org/2012/144.pdf
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
#![allow(dead_code)] // TMP
pub mod glwe;

Loading…
Cancel
Save