|
|
@ -0,0 +1,115 @@ |
|
|
|
use anyhow::Result;
|
|
|
|
use itertools::zip_eq;
|
|
|
|
use rand::Rng;
|
|
|
|
use rand_distr::{Normal, Uniform};
|
|
|
|
use std::{array, ops};
|
|
|
|
|
|
|
|
use arith::{Ring, Rq, R, TR};
|
|
|
|
|
|
|
|
const ERR_SIGMA: f64 = 3.2;
|
|
|
|
|
|
|
|
pub struct GLWE<const Q: u64, const N: usize, const K: usize>(TR<Rq<Q, N>, K>, Rq<Q, N>);
|
|
|
|
|
|
|
|
#[derive(Clone, Debug)]
|
|
|
|
pub struct SecretKey<const Q: u64, const N: usize, const K: usize>(TR<Rq<Q, N>, K>);
|
|
|
|
#[derive(Clone, Debug)]
|
|
|
|
pub struct PublicKey<const Q: u64, const N: usize, const K: usize>(Rq<Q, N>, TR<Rq<Q, N>, K>);
|
|
|
|
|
|
|
|
impl<const Q: u64, const N: usize, const K: usize> GLWE<Q, N, K> {
|
|
|
|
pub fn new_key(mut rng: impl Rng) -> Result<(SecretKey<Q, N, K>, PublicKey<Q, N, K>)> {
|
|
|
|
let Xi_key = Uniform::new(0_f64, 2_f64);
|
|
|
|
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
|
|
|
|
|
|
|
let s: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Xi_key);
|
|
|
|
let a: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Uniform::new(0_f64, Q as f64));
|
|
|
|
let e = Rq::<Q, N>::rand(&mut rng, Xi_err);
|
|
|
|
|
|
|
|
let pk: PublicKey<Q, N, K> = PublicKey((&a * &s) + e, a);
|
|
|
|
Ok((SecretKey(s), pk))
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO delta not as input
|
|
|
|
pub fn encrypt_s<const T: u64>(
|
|
|
|
mut rng: impl Rng,
|
|
|
|
sk: &SecretKey<Q, N, K>,
|
|
|
|
m: &Rq<T, N>,
|
|
|
|
delta: u64,
|
|
|
|
) -> Result<Self> {
|
|
|
|
let m: Rq<Q, N> = m.remodule::<Q>();
|
|
|
|
|
|
|
|
let Xi_key = Uniform::new(0_f64, 2_f64);
|
|
|
|
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
|
|
|
|
|
|
|
let a: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Xi_key);
|
|
|
|
let e = Rq::<Q, N>::rand(&mut rng, Xi_err);
|
|
|
|
|
|
|
|
let b: Rq<Q, N> = (&a * &sk.0) + m * delta + e;
|
|
|
|
Ok(Self(a, b))
|
|
|
|
}
|
|
|
|
pub fn encrypt<const T: u64>(
|
|
|
|
mut rng: impl Rng,
|
|
|
|
pk: &PublicKey<Q, N, K>,
|
|
|
|
m: &Rq<T, N>,
|
|
|
|
delta: u64,
|
|
|
|
) -> Result<Self> {
|
|
|
|
let m: Rq<Q, N> = m.remodule::<Q>();
|
|
|
|
|
|
|
|
let Xi_key = Uniform::new(0_f64, 2_f64);
|
|
|
|
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
|
|
|
|
|
|
|
let u: Rq<Q, N> = Rq::rand(&mut rng, Xi_key);
|
|
|
|
|
|
|
|
let e0 = Rq::<Q, N>::rand(&mut rng, Xi_err);
|
|
|
|
let e1 = TR::<Rq<Q, N>, K>::rand(&mut rng, Xi_err);
|
|
|
|
|
|
|
|
let b: Rq<Q, N> = pk.0 * u + m * delta + e0;
|
|
|
|
let d: TR<Rq<Q, N>, K> = &pk.1 * &u + e1;
|
|
|
|
|
|
|
|
Ok(Self(d, b))
|
|
|
|
}
|
|
|
|
pub fn decrypt<const T: u64>(&self, sk: &SecretKey<Q, N, K>, delta: u64) -> Rq<T, N> {
|
|
|
|
let (d, b): (TR<Rq<Q, N>, K>, Rq<Q, N>) = (self.0.clone(), self.1);
|
|
|
|
let r: Rq<Q, N> = b - &d * &sk.0;
|
|
|
|
let r_scaled: Vec<f64> = r
|
|
|
|
.coeffs()
|
|
|
|
.iter()
|
|
|
|
.map(|e| (e.0 as f64 / delta as f64).round())
|
|
|
|
.collect();
|
|
|
|
let r = Rq::<Q, N>::from_vec_f64(r_scaled);
|
|
|
|
r.remodule::<T>()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use anyhow::Result;
|
|
|
|
use rand::distributions::Uniform;
|
|
|
|
|
|
|
|
use super::*;
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_encrypt_decrypt() -> Result<()> {
|
|
|
|
const Q: u64 = 2u64.pow(16) + 1;
|
|
|
|
const N: usize = 128;
|
|
|
|
const T: u64 = 32; // plaintext modulus
|
|
|
|
const K: usize = 16;
|
|
|
|
type S = GLWE<Q, N, K>;
|
|
|
|
|
|
|
|
let delta: u64 = Q / T; // floored
|
|
|
|
let mut rng = rand::thread_rng();
|
|
|
|
|
|
|
|
for _ in 0..200 {
|
|
|
|
let (sk, pk) = S::new_key(&mut rng)?;
|
|
|
|
|
|
|
|
let msg_dist = Uniform::new(0_u64, T);
|
|
|
|
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
|
|
|
|
|
|
|
let c = S::encrypt(&mut rng, &pk, &m, delta)?;
|
|
|
|
let m_recovered = c.decrypt(&sk, delta);
|
|
|
|
|
|
|
|
assert_eq!(m, m_recovered);
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
}
|