gfhe: get rid of constant generics

This commit is contained in:
2025-08-12 17:10:20 +00:00
parent 9e90f094a9
commit 2a9cbc71de
7 changed files with 437 additions and 283 deletions

View File

@@ -6,23 +6,29 @@ use std::ops::{Add, Mul};
use arith::{Ring, TR};
use crate::glwe::{PublicKey, SecretKey, GLWE};
use crate::glwe::{Param, PublicKey, SecretKey, GLWE};
// l GLWEs
#[derive(Clone, Debug)]
pub struct GLev<R: Ring, const K: usize>(pub(crate) Vec<GLWE<R, K>>);
pub struct GLev<R: Ring>(pub(crate) Vec<GLWE<R>>);
impl<R: Ring, const K: usize> GLev<R, K> {
impl<R: Ring> GLev<R> {
pub fn encrypt(
mut rng: impl Rng,
param: &Param,
beta: u32,
l: u32,
pk: &PublicKey<R, K>,
pk: &PublicKey<R>,
m: &R,
) -> Result<Self> {
let glev: Vec<GLWE<R, K>> = (0..l)
let glev: Vec<GLWE<R>> = (0..l)
.map(|i| {
GLWE::<R, K>::encrypt(&mut rng, pk, &(*m * (R::Q / beta.pow(i as u32) as u64)))
GLWE::<R>::encrypt(
&mut rng,
param,
pk,
&(m.clone() * (param.ring.q / beta.pow(i as u32) as u64)),
)
})
.collect::<Result<Vec<_>>>()?;
@@ -30,38 +36,46 @@ impl<R: Ring, const K: usize> GLev<R, K> {
}
pub fn encrypt_s(
mut rng: impl Rng,
param: &Param,
beta: u32,
l: u32,
sk: &SecretKey<R, K>,
sk: &SecretKey<R>,
m: &R,
// delta: u64,
) -> Result<Self> {
let glev: Vec<GLWE<R, K>> = (1..l + 1)
let glev: Vec<GLWE<R>> = (1..l + 1)
.map(|i| {
GLWE::<R, K>::encrypt_s(&mut rng, sk, &(*m * (R::Q / beta.pow(i as u32) as u64)))
GLWE::<R>::encrypt_s(
&mut rng,
param,
sk,
&(m.clone() * (param.ring.q / beta.pow(i as u32) as u64)), // TODO rm clone
)
})
.collect::<Result<Vec<_>>>()?;
Ok(Self(glev))
}
pub fn decrypt<const T: u64>(&self, sk: &SecretKey<R, K>, beta: u32) -> R {
pub fn decrypt(&self, param: &Param, sk: &SecretKey<R>, beta: u32) -> R {
let pt = self.0[1].decrypt(sk);
pt.mul_div_round(beta as u64, R::Q)
pt.mul_div_round(beta as u64, param.ring.q)
}
}
// dot product between a GLev and Vec<R>.
// Used for operating decompositions with KSK_i.
// GLev * Vec<R> --> GLWE
impl<R: Ring, const K: usize> Mul<Vec<R>> for GLev<R, K> {
type Output = GLWE<R, K>;
fn mul(self, v: Vec<R>) -> GLWE<R, K> {
impl<R: Ring> Mul<Vec<R>> for GLev<R> {
type Output = GLWE<R>;
fn mul(self, v: Vec<R>) -> GLWE<R> {
// TODO debug_assert_eq of params
// l times GLWES
let glwes: Vec<GLWE<R, K>> = self.0;
let glwes: Vec<GLWE<R>> = self.0;
// l iterations
let r: GLWE<R, K> = zip_eq(v, glwes).map(|(v_i, glwe_i)| glwe_i * v_i).sum();
let r: GLWE<R> = zip_eq(v, glwes).map(|(v_i, glwe_i)| glwe_i * v_i).sum();
r
}
}
@@ -72,33 +86,37 @@ mod tests {
use rand::distributions::Uniform;
use super::*;
use arith::Rq;
use arith::{RingParam, Rq};
#[test]
fn test_encrypt_decrypt() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 128;
const T: u64 = 2; // plaintext modulus
const K: usize = 16;
type S = GLev<Rq<Q, N>, K>;
let param = Param {
ring: RingParam {
q: 2u64.pow(16) + 1,
n: 128,
},
k: 16,
t: 2, // plaintext modulus
};
type S = GLev<Rq>;
let beta: u32 = 2;
let l: u32 = 16;
// let delta: u64 = Q / T; // floored
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
let msg_dist = Uniform::new(0_u64, param.t);
for _ in 0..200 {
let (sk, pk) = GLWE::<Rq<Q, N>, K>::new_key(&mut rng)?;
let (sk, pk) = GLWE::<Rq>::new_key(&mut rng, &param)?;
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m: Rq<Q, N> = m.remodule::<Q>();
let m = Rq::rand_u64(&mut rng, msg_dist, &param.pt())?;
let m: Rq = m.remodule(param.ring.q);
let c = S::encrypt(&mut rng, beta, l, &pk, &m)?;
let m_recovered = c.decrypt::<T>(&sk, beta);
let c = S::encrypt(&mut rng, &param, beta, l, &pk, &m)?;
let m_recovered = c.decrypt(&param, &sk, beta);
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
assert_eq!(m.remodule(param.t), m_recovered.remodule(param.t));
}
Ok(())

View File

@@ -8,79 +8,108 @@ use rand_distr::{Normal, Uniform};
use std::iter::Sum;
use std::ops::{Add, AddAssign, Mul, Sub};
use arith::{Ring, Rq, Zq, TR};
use arith::{Ring, RingParam, Rq, Zq, TR};
use crate::glev::GLev;
// const ERR_SIGMA: f64 = 3.2;
const ERR_SIGMA: f64 = 0.0; // TODO WIP
#[derive(Clone, Copy, Debug)]
pub struct Param {
pub ring: RingParam,
pub k: usize,
pub t: u64,
}
impl Param {
// returns the plaintext params
pub fn pt(&self) -> RingParam {
RingParam {
q: self.t,
n: self.ring.n,
}
}
}
/// GLWE implemented over the `Ring` trait, so that it can be also instantiated
/// over the Torus polynomials 𝕋_<N,q>[X] = 𝕋_q[X]/ (X^N+1).
#[derive(Clone, Debug)]
pub struct GLWE<R: Ring, const K: usize>(pub TR<R, K>, pub R);
pub struct GLWE<R: Ring>(pub TR<R>, pub R);
#[derive(Clone, Debug)]
pub struct SecretKey<R: Ring, const K: usize>(pub TR<R, K>);
pub struct SecretKey<R: Ring>(pub TR<R>);
#[derive(Clone, Debug)]
pub struct PublicKey<R: Ring, const K: usize>(pub R, pub TR<R, K>);
pub struct PublicKey<R: Ring>(pub R, pub TR<R>);
// K GLevs, each KSK_i=l GLWEs
#[derive(Clone, Debug)]
pub struct KSK<R: Ring, const K: usize>(Vec<GLev<R, K>>);
pub struct KSK<R: Ring>(Vec<GLev<R>>);
impl<R: Ring, const K: usize> GLWE<R, K> {
pub fn zero() -> Self {
Self(TR::zero(), R::zero())
impl<R: Ring> GLWE<R> {
pub fn zero(k: usize, params: &RingParam) -> Self {
Self(TR::zero(k, &params), R::zero(&params))
}
pub fn from_plaintext(p: R) -> Self {
Self(TR::zero(), p)
pub fn from_plaintext(k: usize, param: &RingParam, p: R) -> Self {
Self(TR::zero(k, &param), p)
}
pub fn new_key(mut rng: impl Rng) -> Result<(SecretKey<R, K>, PublicKey<R, K>)> {
pub fn new_key(mut rng: impl Rng, param: &Param) -> Result<(SecretKey<R>, PublicKey<R>)> {
let Xi_key = Uniform::new(0_f64, 2_f64);
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
let s: TR<R, K> = TR::rand(&mut rng, Xi_key);
let a: TR<R, K> = TR::rand(&mut rng, Uniform::new(0_f64, R::Q as f64));
let e = R::rand(&mut rng, Xi_err);
let s: TR<R> = TR::rand(&mut rng, Xi_key, param.k, &param.ring);
let a: TR<R> = TR::rand(
&mut rng,
Uniform::new(0_f64, param.ring.q as f64),
param.k,
&param.ring,
);
let e = R::rand(&mut rng, Xi_err, &param.ring);
let pk: PublicKey<R, K> = PublicKey((&a * &s) + e, a);
let pk: PublicKey<R> = PublicKey((&a * &s) + e, a);
Ok((SecretKey(s), pk))
}
pub fn pk_from_sk(mut rng: impl Rng, sk: SecretKey<R, K>) -> Result<PublicKey<R, K>> {
pub fn pk_from_sk(mut rng: impl Rng, param: &Param, sk: SecretKey<R>) -> Result<PublicKey<R>> {
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
let a: TR<R, K> = TR::rand(&mut rng, Uniform::new(0_f64, R::Q as f64));
let e = R::rand(&mut rng, Xi_err);
let a: TR<R> = TR::rand(
&mut rng,
Uniform::new(0_f64, param.ring.q as f64),
param.k,
&param.ring,
);
let e = R::rand(&mut rng, Xi_err, &param.ring);
let pk: PublicKey<R, K> = PublicKey((&a * &sk.0) + e, a);
let pk: PublicKey<R> = PublicKey((&a * &sk.0) + e, a);
Ok(pk)
}
pub fn new_ksk(
mut rng: impl Rng,
param: &Param,
beta: u32,
l: u32,
sk: &SecretKey<R, K>,
new_sk: &SecretKey<R, K>,
) -> Result<KSK<R, K>> {
let r: Vec<GLev<R, K>> = (0..K)
sk: &SecretKey<R>,
new_sk: &SecretKey<R>,
) -> Result<KSK<R>> {
debug_assert_eq!(param.k, sk.0.k);
let k = sk.0.k;
let r: Vec<GLev<R>> = (0..k)
.into_iter()
.map(|i|
// treat sk_i as the msg being encrypted
GLev::<R, K>::encrypt_s(&mut rng, beta, l, &new_sk, &sk.0 .0[i]))
GLev::<R>::encrypt_s(&mut rng, param, beta, l, &new_sk, &sk.0 .r[i]))
.collect::<Result<Vec<_>>>()?;
Ok(KSK(r))
}
pub fn key_switch(&self, beta: u32, l: u32, ksk: &KSK<R, K>) -> Self {
let (a, b): (TR<R, K>, R) = (self.0.clone(), self.1);
pub fn key_switch(&self, param: &Param, beta: u32, l: u32, ksk: &KSK<R>) -> Self {
let (a, b): (TR<R>, R) = (self.0.clone(), self.1.clone()); // TODO rm clones
let lhs: GLWE<R, K> = GLWE(TR::zero(), b);
let lhs: GLWE<R> = GLWE(TR::zero(param.k, &param.ring), b);
// K iterations, ksk.0 contains K times GLev
let rhs: GLWE<R, K> = zip_eq(a.0, ksk.0.clone())
let rhs: GLWE<R> = zip_eq(a.r, ksk.0.clone())
.map(|(a_i, ksk_i)| ksk_i * a_i.decompose(beta, l)) // dot_product
.sum();
@@ -90,121 +119,136 @@ impl<R: Ring, const K: usize> GLWE<R, K> {
// encrypts with the given SecretKey (instead of PublicKey)
pub fn encrypt_s(
mut rng: impl Rng,
sk: &SecretKey<R, K>,
param: &Param,
sk: &SecretKey<R>,
m: &R, // already scaled
) -> Result<Self> {
let Xi_key = Uniform::new(0_f64, 2_f64);
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
let a: TR<R, K> = TR::rand(&mut rng, Xi_key);
let e = R::rand(&mut rng, Xi_err);
let a: TR<R> = TR::rand(&mut rng, Xi_key, param.k, &param.ring);
let e = R::rand(&mut rng, Xi_err, &param.ring);
let b: R = (&a * &sk.0) + *m + e;
let b: R = (&a * &sk.0) + m.clone() + e; // TODO rm clone
Ok(Self(a, b))
}
pub fn encrypt(
mut rng: impl Rng,
pk: &PublicKey<R, K>,
param: &Param,
pk: &PublicKey<R>,
m: &R, // already scaled
) -> Result<Self> {
let Xi_key = Uniform::new(0_f64, 2_f64);
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
let u: R = R::rand(&mut rng, Xi_key);
let u: R = R::rand(&mut rng, Xi_key, &param.ring);
let e0 = R::rand(&mut rng, Xi_err);
let e1 = TR::<R, K>::rand(&mut rng, Xi_err);
let e0 = R::rand(&mut rng, Xi_err, &param.ring);
let e1 = TR::<R>::rand(&mut rng, Xi_err, param.k, &param.ring);
let b: R = pk.0.clone() * u.clone() + *m + e0;
let d: TR<R, K> = &pk.1 * &u + e1;
let b: R = pk.0.clone() * u.clone() + m.clone() + e0; // TODO rm clones
let d: TR<R> = &pk.1 * &u + e1;
Ok(Self(d, b))
}
// returns m' not downscaled
pub fn decrypt(&self, sk: &SecretKey<R, K>) -> R {
let (d, b): (TR<R, K>, R) = (self.0.clone(), self.1);
pub fn decrypt(&self, sk: &SecretKey<R>) -> R {
let (d, b): (TR<R>, R) = (self.0.clone(), self.1.clone());
let p: R = b - &d * &sk.0;
p
}
}
// Methods for when Ring=Rq<Q,N>
impl<const Q: u64, const N: usize, const K: usize> GLWE<Rq<Q, N>, K> {
impl GLWE<Rq> {
// scale up
pub fn encode<const T: u64>(m: &Rq<T, N>) -> Rq<Q, N> {
let m = m.remodule::<Q>();
let delta = Q / T; // floored
pub fn encode(param: &Param, m: &Rq) -> Rq {
debug_assert_eq!(param.t, m.param.q);
let m = m.remodule(param.ring.q);
let delta = param.ring.q / param.t; // floored
m * delta
}
// scale down
pub fn decode<const T: u64>(m: &Rq<Q, N>) -> Rq<T, N> {
let r = m.mul_div_round(T, Q);
let r: Rq<T, N> = r.remodule::<T>();
pub fn decode(param: &Param, m: &Rq) -> Rq {
let r = m.mul_div_round(param.t, param.ring.q);
let r: Rq = r.remodule(param.t);
r
}
pub fn mod_switch<const P: u64>(&self) -> GLWE<Rq<P, N>, K> {
let a: TR<Rq<P, N>, K> = TR(self
.0
.0
.iter()
.map(|r| r.mod_switch::<P>())
.collect::<Vec<_>>());
let b: Rq<P, N> = self.1.mod_switch::<P>();
pub fn mod_switch(&self, p: u64) -> GLWE<Rq> {
let a: TR<Rq> = TR {
k: self.0.k,
r: self.0.r.iter().map(|r| r.mod_switch(p)).collect::<Vec<_>>(),
};
let b: Rq = self.1.mod_switch(p);
GLWE(a, b)
}
}
impl<R: Ring, const K: usize> Add<GLWE<R, K>> for GLWE<R, K> {
impl<R: Ring> Add<GLWE<R>> for GLWE<R> {
type Output = Self;
fn add(self, other: Self) -> Self {
let a: TR<R, K> = self.0 + other.0;
let a: TR<R> = self.0 + other.0;
let b: R = self.1 + other.1;
Self(a, b)
}
}
impl<R: Ring, const K: usize> Add<R> for GLWE<R, K> {
impl<R: Ring> Add<R> for GLWE<R> {
type Output = Self;
fn add(self, plaintext: R) -> Self {
let a: TR<R, K> = self.0;
let a: TR<R> = self.0;
let b: R = self.1 + plaintext;
Self(a, b)
}
}
impl<R: Ring, const K: usize> AddAssign for GLWE<R, K> {
impl<R: Ring> AddAssign for GLWE<R> {
fn add_assign(&mut self, rhs: Self) {
for i in 0..K {
self.0 .0[i] = self.0 .0[i].clone() + rhs.0 .0[i].clone();
debug_assert_eq!(self.0.k, rhs.0.k);
debug_assert_eq!(self.1.param(), rhs.1.param());
let k = self.0.k;
for i in 0..k {
self.0.r[i] = self.0.r[i].clone() + rhs.0.r[i].clone();
}
self.1 = self.1.clone() + rhs.1.clone();
}
}
impl<R: Ring, const K: usize> Sum<GLWE<R, K>> for GLWE<R, K> {
fn sum<I>(iter: I) -> Self
impl<R: Ring> Sum<GLWE<R>> for GLWE<R> {
fn sum<I>(mut iter: I) -> Self
where
I: Iterator<Item = Self>,
{
let mut acc = GLWE::<R, K>::zero();
for e in iter {
acc += e;
}
acc
// let mut acc = GLWE::<R>::zero();
// for e in iter {
// acc += e;
// }
// acc
let first = iter.next().unwrap();
iter.fold(first, |acc, e| acc + e)
}
}
impl<R: Ring, const K: usize> Sub<GLWE<R, K>> for GLWE<R, K> {
impl<R: Ring> Sub<GLWE<R>> for GLWE<R> {
type Output = Self;
fn sub(self, other: Self) -> Self {
let a: TR<R, K> = self.0 - other.0;
let a: TR<R> = self.0 - other.0;
let b: R = self.1 - other.1;
Self(a, b)
}
}
impl<R: Ring, const K: usize> Mul<R> for GLWE<R, K> {
impl<R: Ring> Mul<R> for GLWE<R> {
type Output = Self;
fn mul(self, plaintext: R) -> Self {
let a: TR<R, K> = TR(self.0 .0.iter().map(|r_i| *r_i * plaintext).collect());
let a: TR<R> = TR {
k: self.0.k,
r: self
.0
.r
.iter()
.map(|r_i| r_i.clone() * plaintext.clone())
.collect(),
};
let b: R = self.1 * plaintext;
Self(a, b)
}
@@ -255,77 +299,93 @@ mod tests {
use super::*;
#[test]
fn test_encrypt_decrypt() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 128;
const T: u64 = 32; // plaintext modulus
const K: usize = 16;
type S = GLWE<Rq<Q, N>, K>;
fn test_encrypt_decrypt_ring_nq() -> Result<()> {
let param = Param {
ring: RingParam {
q: 2u64.pow(16) + 1,
n: 128,
},
k: 16,
t: 32, // plaintext modulus
};
// let k: usize = 16;
type S = GLWE<Rq>;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
let msg_dist = Uniform::new(0_u64, param.t);
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let (sk, pk) = S::new_key(&mut rng, &param)?;
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?; // msg
// let m: Rq<Q, N> = m.remodule::<Q>();
let m = Rq::rand_u64(&mut rng, msg_dist, &param.pt())?; // msg
// let m: Rq<Q, N> = m.remodule::<Q>();
let p = S::encode::<T>(&m); // plaintext
let c = S::encrypt(&mut rng, &pk, &p)?; // ciphertext
let p = S::encode(&param, &m); // plaintext
let c = S::encrypt(&mut rng, &param, &pk, &p)?; // ciphertext
let p_recovered = c.decrypt(&sk);
let m_recovered = S::decode::<T>(&p_recovered);
let m_recovered = S::decode(&param, &p_recovered);
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
assert_eq!(m.remodule(param.t), m_recovered.remodule(param.t));
// same but using encrypt_s (with sk instead of pk))
let c = S::encrypt_s(&mut rng, &sk, &p)?;
let c = S::encrypt_s(&mut rng, &param, &sk, &p)?;
let p_recovered = c.decrypt(&sk);
let m_recovered = S::decode::<T>(&p_recovered);
let m_recovered = S::decode(&param, &p_recovered);
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
assert_eq!(m.remodule(param.t), m_recovered.remodule(param.t));
}
Ok(())
}
use arith::{Tn, T64};
use std::array;
pub fn t_encode<const P: u64>(m: &Rq<P, 4>) -> Tn<4> {
let delta = u64::MAX / P; // floored
pub fn t_encode(param: &RingParam, m: &Rq) -> Tn {
let p = m.param.q; // plaintext space
let delta = u64::MAX / p; // floored
let coeffs = m.coeffs();
Tn(array::from_fn(|i| T64(coeffs[i].0 * delta)))
// Tn(array::from_fn(|i| T64(coeffs[i].0 * delta)))
// Tn{param, coeffs: array::from_fn(|i| T64(coeffs[i].0 * delta)))
Tn {
param: *param,
coeffs: coeffs.iter().map(|c_i| T64(c_i.v * delta)).collect(),
}
}
pub fn t_decode<const P: u64>(p: &Tn<4>) -> Rq<P, 4> {
let p = p.mul_div_round(P, u64::MAX);
Rq::<P, 4>::from_vec_u64(p.coeffs().iter().map(|c| c.0).collect())
pub fn t_decode(param: &Param, pt: &Tn) -> Rq {
let p = param.t;
let pt = pt.mul_div_round(p, u64::MAX);
Rq::from_vec_u64(&param.pt(), pt.coeffs().iter().map(|c| c.0).collect())
}
#[test]
fn test_encrypt_decrypt_torus() -> Result<()> {
const N: usize = 128;
const T: u64 = 32; // plaintext modulus
const K: usize = 16;
type S = GLWE<Tn<4>, K>;
let param = Param {
ring: RingParam {
q: u64::MAX,
n: 128,
},
k: 16,
t: 32, // plaintext modulus
};
type S = GLWE<Tn>;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_f64, T as f64);
let msg_dist = Uniform::new(0_f64, param.t as f64);
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let (sk, pk) = S::new_key(&mut rng, &param)?;
let m = Rq::<T, 4>::rand(&mut rng, msg_dist); // msg
let m = Rq::rand(&mut rng, msg_dist, &param.pt()); // msg
let p = t_encode::<T>(&m); // plaintext
let c = S::encrypt(&mut rng, &pk, &p)?; // ciphertext
let p = t_encode(&param.ring, &m); // plaintext
let c = S::encrypt(&mut rng, &param, &pk, &p)?; // ciphertext
let p_recovered = c.decrypt(&sk);
let m_recovered = t_decode::<T>(&p_recovered);
let m_recovered = t_decode(&param, &p_recovered);
assert_eq!(m, m_recovered);
// same but using encrypt_s (with sk instead of pk))
let c = S::encrypt_s(&mut rng, &sk, &p)?;
let c = S::encrypt_s(&mut rng, &param, &sk, &p)?;
let p_recovered = c.decrypt(&sk);
let m_recovered = t_decode::<T>(&p_recovered);
let m_recovered = t_decode(&param, &p_recovered);
assert_eq!(m, m_recovered);
}
@@ -335,32 +395,36 @@ mod tests {
#[test]
fn test_addition() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 128;
const T: u64 = 20;
const K: usize = 16;
type S = GLWE<Rq<Q, N>, K>;
let param = Param {
ring: RingParam {
q: 2u64.pow(16) + 1,
n: 128,
},
k: 16,
t: 20, // plaintext modulus
};
type S = GLWE<Rq>;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
let msg_dist = Uniform::new(0_u64, param.t);
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let (sk, pk) = S::new_key(&mut rng, &param)?;
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let p1: Rq<Q, N> = S::encode::<T>(&m1); // plaintext
let p2: Rq<Q, N> = S::encode::<T>(&m2); // plaintext
let m1 = Rq::rand_u64(&mut rng, msg_dist, &param.pt())?;
let m2 = Rq::rand_u64(&mut rng, msg_dist, &param.pt())?;
let p1: Rq = S::encode(&param, &m1); // plaintext
let p2: Rq = S::encode(&param, &m2); // plaintext
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
let c2 = S::encrypt(&mut rng, &pk, &p2)?;
let c1 = S::encrypt(&mut rng, &param, &pk, &p1)?;
let c2 = S::encrypt(&mut rng, &param, &pk, &p2)?;
let c3 = c1 + c2;
let p3_recovered = c3.decrypt(&sk);
let m3_recovered = S::decode::<T>(&p3_recovered);
let m3_recovered = S::decode(&param, &p3_recovered);
assert_eq!((m1 + m2).remodule::<T>(), m3_recovered.remodule::<T>());
assert_eq!((m1 + m2).remodule(param.t), m3_recovered.remodule(param.t));
}
Ok(())
@@ -368,31 +432,35 @@ mod tests {
#[test]
fn test_add_plaintext() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 128;
const T: u64 = 32;
const K: usize = 16;
type S = GLWE<Rq<Q, N>, K>;
let param = Param {
ring: RingParam {
q: 2u64.pow(16) + 1,
n: 128,
},
k: 16,
t: 32, // plaintext modulus
};
type S = GLWE<Rq>;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
let msg_dist = Uniform::new(0_u64, param.t);
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let (sk, pk) = S::new_key(&mut rng, &param)?;
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let p1: Rq<Q, N> = S::encode::<T>(&m1); // plaintext
let p2: Rq<Q, N> = S::encode::<T>(&m2); // plaintext
let m1 = Rq::rand_u64(&mut rng, msg_dist, &param.pt())?;
let m2 = Rq::rand_u64(&mut rng, msg_dist, &param.pt())?;
let p1: Rq = S::encode(&param, &m1); // plaintext
let p2: Rq = S::encode(&param, &m2); // plaintext
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
let c1 = S::encrypt(&mut rng, &param, &pk, &p1)?;
let c3 = c1 + p2;
let p3_recovered = c3.decrypt(&sk);
let m3_recovered = S::decode::<T>(&p3_recovered);
let m3_recovered = S::decode(&param, &p3_recovered);
assert_eq!((m1 + m2).remodule::<T>(), m3_recovered.remodule::<T>());
assert_eq!((m1 + m2).remodule(param.t), m3_recovered.remodule(param.t));
}
Ok(())
@@ -400,30 +468,34 @@ mod tests {
#[test]
fn test_mul_plaintext() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 16;
const T: u64 = 4;
const K: usize = 16;
type S = GLWE<Rq<Q, N>, K>;
let param = Param {
ring: RingParam {
q: 2u64.pow(16) + 1,
n: 16,
},
k: 16,
t: 4, // plaintext modulus
};
type S = GLWE<Rq>;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
let msg_dist = Uniform::new(0_u64, param.t);
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let (sk, pk) = S::new_key(&mut rng, &param)?;
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let p1: Rq<Q, N> = S::encode::<T>(&m1); // plaintext
let p2 = m2.remodule::<Q>(); // notice we don't encode (scale by delta)
let m1 = Rq::rand_u64(&mut rng, msg_dist, &param.pt())?;
let m2 = Rq::rand_u64(&mut rng, msg_dist, &param.pt())?;
let p1: Rq = S::encode(&param, &m1); // plaintext
let p2 = m2.remodule(param.ring.q); // notice we don't encode (scale by delta)
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
let c1 = S::encrypt(&mut rng, &param, &pk, &p1)?;
let c3 = c1 * p2;
let p3_recovered: Rq<Q, N> = c3.decrypt(&sk);
let m3_recovered: Rq<T, N> = S::decode::<T>(&p3_recovered);
assert_eq!((m1.to_r() * m2.to_r()).to_rq::<T>(), m3_recovered);
let p3_recovered: Rq = c3.decrypt(&sk);
let m3_recovered: Rq = S::decode(&param, &p3_recovered);
assert_eq!((m1.to_r() * m2.to_r()).to_rq(param.t), m3_recovered);
}
Ok(())
@@ -431,33 +503,48 @@ mod tests {
#[test]
fn test_mod_switch() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const P: u64 = 2u64.pow(8) + 1;
let param = Param {
ring: RingParam {
q: 2u64.pow(16) + 1,
n: 8,
},
k: 16,
t: 4, // plaintext modulus, must be a prime or power of a prime
};
let new_q: u64 = 2u64.pow(8) + 1;
// note: wip, Q and P chosen so that P/Q is an integer
const N: usize = 8;
const T: u64 = 4; // plaintext modulus, must be a prime or power of a prime
const K: usize = 16;
type S = GLWE<Rq<Q, N>, K>;
type S = GLWE<Rq>;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
let msg_dist = Uniform::new(0_u64, param.t);
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let (sk, pk) = S::new_key(&mut rng, &param)?;
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m = Rq::rand_u64(&mut rng, msg_dist, &param.pt())?;
let p = S::encode::<T>(&m);
let c = S::encrypt(&mut rng, &pk, &p)?;
let p = S::encode(&param, &m);
let c = S::encrypt(&mut rng, &param, &pk, &p)?;
let c2: GLWE<Rq<P, N>, K> = c.mod_switch::<P>();
let sk2: SecretKey<Rq<P, N>, K> =
SecretKey(TR(sk.0 .0.iter().map(|s_i| s_i.remodule::<P>()).collect()));
let c2: GLWE<Rq> = c.mod_switch(new_q);
assert_eq!(c2.1.param.q, new_q);
let sk2: SecretKey<Rq> = SecretKey(TR {
k: param.k,
r: sk.0.r.iter().map(|s_i| s_i.remodule(new_q)).collect(),
});
let p_recovered = c2.decrypt(&sk2);
let m_recovered = GLWE::<Rq<P, N>, K>::decode::<T>(&p_recovered);
let new_param = Param {
ring: RingParam {
q: new_q,
n: param.ring.n,
},
k: param.k,
t: param.t,
};
let m_recovered = GLWE::<Rq>::decode(&new_param, &p_recovered);
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
assert_eq!(m.remodule(param.t), m_recovered.remodule(param.t));
}
Ok(())
@@ -465,40 +552,44 @@ mod tests {
#[test]
fn test_key_switch() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 128;
const T: u64 = 2; // plaintext modulus
const K: usize = 16;
type S = GLWE<Rq<Q, N>, K>;
let param = Param {
ring: RingParam {
q: 2u64.pow(16) + 1,
n: 128,
},
k: 16,
t: 2,
};
type S = GLWE<Rq>;
let beta: u32 = 2;
let l: u32 = 16;
let mut rng = rand::thread_rng();
let (sk, pk) = S::new_key(&mut rng)?;
let (sk2, _) = S::new_key(&mut rng)?;
let (sk, pk) = S::new_key(&mut rng, &param)?;
let (sk2, _) = S::new_key(&mut rng, &param)?;
// ksk to switch from sk to sk2
let ksk = S::new_ksk(&mut rng, beta, l, &sk, &sk2)?;
let ksk = S::new_ksk(&mut rng, &param, beta, l, &sk, &sk2)?;
let msg_dist = Uniform::new(0_u64, T);
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let p = S::encode::<T>(&m); // plaintext
//
let c = S::encrypt_s(&mut rng, &sk, &p)?;
let msg_dist = Uniform::new(0_u64, param.t);
let m = Rq::rand_u64(&mut rng, msg_dist, &param.pt())?;
let p = S::encode(&param, &m); // plaintext
//
let c = S::encrypt_s(&mut rng, &param, &sk, &p)?;
let c2 = c.key_switch(beta, l, &ksk);
let c2 = c.key_switch(&param, beta, l, &ksk);
// decrypt with the 2nd secret key
let p_recovered = c2.decrypt(&sk2);
let m_recovered = S::decode::<T>(&p_recovered);
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
let m_recovered = S::decode(&param, &p_recovered);
assert_eq!(m.remodule(param.t), m_recovered.remodule(param.t));
// do the same but now encrypting with pk
let c = S::encrypt(&mut rng, &pk, &p)?;
let c2 = c.key_switch(beta, l, &ksk);
let c = S::encrypt(&mut rng, &param, &pk, &p)?;
let c2 = c.key_switch(&param, beta, l, &ksk);
let p_recovered = c2.decrypt(&sk2);
let m_recovered = S::decode::<T>(&p_recovered);
let m_recovered = S::decode(&param, &p_recovered);
assert_eq!(m, m_recovered);
Ok(())