mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-23 20:23:54 +01:00
add modulus switching to GLWE ciphertexts (and Zq,Rq)
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
[workspace]
|
||||
members = [
|
||||
"arith",
|
||||
"generalized-fhe",
|
||||
"gfhe",
|
||||
"bfv",
|
||||
"ckks"
|
||||
]
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
Implementations from scratch done while studying some FHE papers; do not use in production.
|
||||
|
||||
- `arith`: contains $\mathbb{Z}_q$, $R_q=\mathbb{Z}_q[X]/(X^N+1)$ and $R=\mathbb{Z}[X]/(X^N+1)$ arithmetic implementations, together with the NTT implementation.
|
||||
- `generalized-fhe`: contains the structs and logic for RLWE, GLWE, GLev, GGSW, RGSW cryptosystems, which can be used by concrete FHE schemes.
|
||||
- `gfhe`: (gfhe=generalized-fhe) contains the structs and logic for RLWE, GLWE, GLev, GGSW, RGSW cryptosystems, and modulus switching and key switching methods, which can be used by concrete FHE schemes.
|
||||
- `bfv`: https://eprint.iacr.org/2012/144.pdf scheme implementation
|
||||
- `ckks`: https://eprint.iacr.org/2016/421.pdf scheme implementation
|
||||
|
||||
|
||||
@@ -49,9 +49,6 @@ impl<const Q: u64, const N: usize> Ring for Rq<Q, N> {
|
||||
}
|
||||
}
|
||||
|
||||
// TODO define a trait "PolynomialRingTrait" or similar, so that when other structs use it can just
|
||||
// use the trait and not need to add '<Q, N>' to their params
|
||||
|
||||
impl<const Q: u64, const N: usize> From<crate::ring::R<N>> for Rq<Q, N> {
|
||||
fn from(r: crate::ring::R<N>) -> Self {
|
||||
Self::from_vec(
|
||||
@@ -165,7 +162,7 @@ impl<const Q: u64, const N: usize> Rq<Q, N> {
|
||||
}
|
||||
|
||||
/// perform the mod switch operation from Q to Q', where Q2=Q'
|
||||
fn mod_switch<const Q2: u64>(&self) -> Rq<Q2, N> {
|
||||
pub fn mod_switch<const Q2: u64>(&self) -> Rq<Q2, N> {
|
||||
Rq::<Q2, N> {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i].mod_switch::<Q2>()),
|
||||
evals: None,
|
||||
|
||||
@@ -4,7 +4,7 @@ use std::fmt::Debug;
|
||||
use std::iter::Sum;
|
||||
use std::ops::{Add, AddAssign, Mul, Sub, SubAssign};
|
||||
|
||||
/// represents a ring element
|
||||
/// Represents a ring element. Currently implemented by ring.rs#R and ringq.rs#Rq.
|
||||
pub trait Ring:
|
||||
Sized
|
||||
+ Add<Output = Self>
|
||||
@@ -25,6 +25,6 @@ pub trait Ring:
|
||||
|
||||
fn coeffs(&self) -> Vec<Self::C>;
|
||||
fn zero() -> Self;
|
||||
fn rand(rng: impl Rng, dist: impl Distribution<f64>) -> Self;
|
||||
// note/wip/warning: dist (0,q) with f64, will output more '0=q' elements than other values
|
||||
fn rand(rng: impl Rng, dist: impl Distribution<f64>) -> Self;
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[package]
|
||||
name = "generalized-fhe"
|
||||
name = "gfhe"
|
||||
version = "0.1.0"
|
||||
edition = "2024"
|
||||
|
||||
@@ -1,2 +1,2 @@
|
||||
# common
|
||||
# gfhe - generalized-fhe
|
||||
Contains the structs and logic for RLWE, GLWE, GLev, GGSW, RGSW cryptosystems, which can be used by concrete FHE schemes.
|
||||
@@ -69,14 +69,22 @@ impl<const Q: u64, const N: usize, const K: usize> GLWE<Q, N, K> {
|
||||
pub fn decrypt<const T: u64>(&self, sk: &SecretKey<Q, N, K>, delta: u64) -> Rq<T, N> {
|
||||
let (d, b): (TR<Rq<Q, N>, K>, Rq<Q, N>) = (self.0.clone(), self.1);
|
||||
let r: Rq<Q, N> = b - &d * &sk.0;
|
||||
let r_scaled: Vec<f64> = r
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|e| (e.0 as f64 / delta as f64).round())
|
||||
.collect();
|
||||
let r = Rq::<Q, N>::from_vec_f64(r_scaled);
|
||||
let r = r.mul_div_round(T, Q);
|
||||
// let r_scaled: Vec<f64> = r
|
||||
// .coeffs()
|
||||
// .iter()
|
||||
// // .map(|e| (e.0 as f64 / delta as f64).round())
|
||||
// .map(|e| e.mul_div_round(T, Q))
|
||||
// .collect();
|
||||
// let r = Rq::<Q, N>::from_vec_f64(r_scaled);
|
||||
r.remodule::<T>()
|
||||
}
|
||||
|
||||
pub fn mod_switch<const P: u64>(&self) -> GLWE<P, N, K> {
|
||||
let a: TR<Rq<P, N>, K> = TR(self.0 .0.iter().map(|r| r.mod_switch::<P>()).collect());
|
||||
let b: Rq<P, N> = self.1.mod_switch::<P>();
|
||||
GLWE(a, b)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize, const K: usize> Add<GLWE<Q, N, K>> for GLWE<Q, N, K> {
|
||||
@@ -233,4 +241,43 @@ mod tests {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mod_switch() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const P: u64 = 2u64.pow(8) + 1;
|
||||
// note: wip, Q and P chosen so that P/Q is an integer
|
||||
const N: usize = 8;
|
||||
const T: u64 = 8; // plaintext modulus, must be a prime or power of a prime
|
||||
const K: usize = 16;
|
||||
type S = GLWE<Q, N, K>;
|
||||
|
||||
let delta: u64 = Q / T; // floored
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
dbg!(P as f64 / Q as f64);
|
||||
dbg!(delta);
|
||||
dbg!(delta as f64 * P as f64 / Q as f64);
|
||||
dbg!(delta as f64 * (P as f64 / Q as f64));
|
||||
|
||||
for _ in 0..200 {
|
||||
let (sk, pk) = S::new_key(&mut rng)?;
|
||||
|
||||
let msg_dist = Uniform::new(0_u64, T);
|
||||
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||
|
||||
let c = S::encrypt(&mut rng, &pk, &m, delta)?;
|
||||
|
||||
let c2 = c.mod_switch::<P>();
|
||||
let sk2: SecretKey<P, N, K> =
|
||||
SecretKey(TR(sk.0 .0.iter().map(|s_i| s_i.remodule::<P>()).collect()));
|
||||
let delta2: u64 = ((P as f64 * delta as f64) / Q as f64).round() as u64;
|
||||
|
||||
let m_recovered = c2.decrypt(&sk2, delta2);
|
||||
|
||||
assert_eq!(m, m_recovered);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user