Browse Source

wip, works for values < (1<<62)

composite-ntt
arnaucube 1 month ago
parent
commit
4d4e2dab76
5 changed files with 300 additions and 24 deletions
  1. +1
    -0
      arith/src/lib.rs
  2. +29
    -22
      arith/src/ntt.rs
  3. +268
    -0
      arith/src/ntt_u64.rs
  4. +1
    -1
      ckks/src/lib.rs
  5. +1
    -1
      tfhe/src/tggsw.rs

+ 1
- 0
arith/src/lib.rs

@ -17,6 +17,7 @@ pub mod tuple_ring;
// mod naive_ntt; // note: for dev only // mod naive_ntt; // note: for dev only
pub mod ntt; pub mod ntt;
pub mod ntt_u64;
// expose objects // expose objects
pub use complex::C; pub use complex::C;

+ 29
- 22
arith/src/ntt.rs

@ -51,18 +51,21 @@ impl NTT {
let S: u64 = roots_of_unity[m + i]; let S: u64 = roots_of_unity[m + i];
for j in k..k + t { for j in k..k + t {
let U: u64 = r[j]; let U: u64 = r[j];
let V: u64 = (r[j + t] * S) % q;
// let V: u64 = (r[j + t] * S) % q;
let V: u64 = ((r[j + t] as u128 * S as u128) % q as u128) as u64;
// compute r[j] = (U + V) % q: // compute r[j] = (U + V) % q:
r[j] = U + V;
if r[j] >= q {
r[j] -= q;
}
// compute r[j + t] = (U - V) % q:
if U >= V {
r[j + t] = U - V;
} else {
r[j + t] = (q + U) - V;
}
r[j] = ((U as u128 + V as u128) % q as u128) as u64;
r[j + t] = (((q as u128 + U as u128) - V as u128) % q as u128) as u64;
// r[j] = U + V;
// if r[j] >= q {
// r[j] -= q;
// }
// // compute r[j + t] = (U - V) % q:
// if U >= V {
// r[j + t] = U - V;
// } else {
// r[j + t] = (q + U) - V;
// }
} }
k = k + 2 * t; k = k + 2 * t;
} }
@ -90,17 +93,20 @@ impl NTT {
for j in k..k + t { for j in k..k + t {
let U: u64 = r[j]; let U: u64 = r[j];
let V: u64 = r[j + t]; let V: u64 = r[j + t];
r[j] = ((U as u128 + V as u128) % q as u128) as u64;
r[j + t] =
(((q as u128 + U as u128) - V as u128) * S as u128 % q as u128) as u64;
// compute r[j] = (U + V) % q: // compute r[j] = (U + V) % q:
r[j] = U + V;
if r[j] >= q {
r[j] -= q;
}
// compute r[j + t] = ((U - V) * S) % q;
if U >= V {
r[j + t] = ((U - V) * S) % q;
} else {
r[j + t] = ((q + U - V) * S) % q;
}
// r[j] = U + V;
// if r[j] >= q {
// r[j] -= q;
// }
// // compute r[j + t] = ((U - V) * S) % q;
// if U >= V {
// r[j + t] = ((U - V) * S) % q;
// } else {
// r[j + t] = ((q + U - V) * S) % q;
// }
} }
k += 2 * t; k += 2 * t;
} }
@ -108,7 +114,8 @@ impl NTT {
m /= 2; m /= 2;
} }
for i in 0..n { for i in 0..n {
r[i] = (r[i] * n_inv) % q;
// r[i] = (r[i] * n_inv) % q;
r[i] = ((r[i] as u128 * n_inv as u128) % q as u128) as u64;
} }
r r
} }

+ 268
- 0
arith/src/ntt_u64.rs

@ -0,0 +1,268 @@
//! This file implements the wrapper on top of the ntt.rs to be able to compute
//! the NTT for non-prime modulus, specifically for modulus 2^64 (for u64).
use crate::ntt::NTT as NTT_p;
// const P0: u64 = 17293822569241362433;
// const P0: u64 = 4611686018427387905;
// const P1: u64 = 4611686018326724609;
const P0: u64 = 8070449433331580929;
const P1: u64 = 8070450532384645121;
// const P0: u64 = (1 << 60) - (1 << 28) + 1;
// const P1: u64 = (1 << 60) - (1 << 27) + 1;
// const P2: u64 = (1 << 60) - (1 << 26) + 1;
#[derive(Debug)]
pub struct NTT {}
impl NTT {
pub fn ntt(
n: usize,
a: &Vec<u64>,
) -> (
Vec<u64>,
Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
) {
// TODO ensure that: a_i <P0
// apply modulus p_i
let a_0: Vec<u64> = a.iter().map(|a_i| (a_i % P0 + P0) % P0).collect();
let a_1: Vec<u64> = a.iter().map(|a_i| (a_i % P1 + P1) % P1).collect();
// let a_2: Vec<u64> = a.iter().map(|a_i| (a_i % P2 + P2) % P2).collect();
// let a_3: Vec<u64> = a.iter().map(|a_i| (a_i % P3 + P3) % P3).collect();
// let a_4: Vec<u64> = a.iter().map(|a_i| (a_i % P4 + P4) % P4).collect();
// let a_5: Vec<u64> = a.iter().map(|a_i| (a_i % P5 + P5) % P5).collect();
// let a_6: Vec<u64> = a.iter().map(|a_i| (a_i % P6 + P6) % P6).collect();
let r_0 = NTT_p::ntt(P0, n, &a_0);
let r_1 = NTT_p::ntt(P1, n, &a_1);
// let r_2 = NTT_p::ntt(P2, n, &a_2);
// let r_3 = NTT_p::ntt(P3, n, &a_3);
// let r_4 = NTT_p::ntt(P4, n, &a_4);
// let r_5 = NTT_p::ntt(P5, n, &a_5);
// let r_6 = NTT_p::ntt(P6, n, &a_6);
(r_0, r_1) //, r_2) //, r_3, r_4) //, r_5, r_6)
}
pub fn intt(
n: usize,
r: &(
Vec<u64>,
Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
),
) -> Vec<u64> {
let a_0 = NTT_p::intt(P0, n, &r.0);
let a_1 = NTT_p::intt(P1, n, &r.1);
// let a_2 = NTT_p::intt(P2, n, &r.2);
// let a_3 = NTT_p::intt(P3, n, &r.3);
// let a_4 = NTT_p::intt(P4, n, &r.4);
// let a_5 = NTT_p::intt(P5, n, &r.5);
// let a_6 = NTT_p::intt(P6, n, &r.6);
// Garner CRT for two moduli: combine (r1 mod p1, r2 mod p2) -> Z/(p1*p2)
// let inv_p1_mod_p2: u128 = inv_mod_u64(p1 % p2, p2) as u128;
// const INV_P1_MOD_P2: u128 = 4895217125691974194;
reconstruct(a_0, a_1) //, a_2) // , a_3, a_4) //, a_5, a_6)
}
}
fn reconstruct(
a0: Vec<u64>,
a1: Vec<u64>,
// a2: Vec<u64>,
// a_3: Vec<u64>,
// a_4: Vec<u64>,
// a_5: Vec<u64>,
// a_6: Vec<u64>,
) -> Vec<u64> {
// let Q = P0 as u128 * P1 as u128;
// y_i = q/q_i
let y0 = ((u64::MAX as u128 + 1) / P0 as u128);
let y1 = ((u64::MAX as u128 + 1) / P1 as u128);
// let y2 = ((u64::MAX as u128 + 1) / P2 as u128) as u64;
// let y0: u128 = P1 as u128 * P2 as u128; // N_i =Q/P0 = P1*P2
// let y1: u128 = P0 as u128 * P2 as u128;
// let y2: u128 = P0 as u128 * P1 as u128;
// let y0 = (Q / P0 as u128) as u64;
// let y1 = (Q / P1 as u128) as u64;
// let y2 = ((u64::MAX as u128 + 1) / P2 as u128) as u64;
// let y3 = ((u64::MAX as u128 + 1) / P3 as u128) as u64;
// let y4 = ((u64::MAX as u128 + 1) / P4 as u128) as u64;
// y_i^-1 mod q_i = z_i
let z0: u128 = inv_mod(P0 as u128, y0); // M_i = N_i^-1 mod q_i
let z1: u128 = inv_mod(P1 as u128, y1);
// let z2: u128 = inv_mod(P2 as u128, y2);
// let y2_inv = inv_mod(P2 as u128, y2);
// let y3_inv = inv_mod(P3 as u128, y3);
// let y4_inv = inv_mod(P4 as u128, y4);
// m1 = q1^-1 mod q2
// aux = (a2 - a1) * m1 mod q2
// a = a1 + (q1 * m1) * aux
let m1 = inv_mod(P1 as u128, P0 as u128) as u64; // P0^-1 mod P1
let aux: Vec<u64> = itertools::zip_eq(a0.clone(), a1.clone())
.map(|(a0_i, a1_i)| ((a1_i - a0_i) * m1) % P1)
.collect();
let a: Vec<u64> = itertools::zip_eq(a0, aux)
// .map(|(a1_i, aux_i)| a1_i + (P1 * m1) * aux_i)
// .map(|(a0_i, aux_i)| a0_i + (P0 * m1) * aux_i)
.map(|(a0_i, aux_i)| a0_i + ((P0 * m1) % P1) * aux_i)
.collect();
a
// dbg!(a0[0] as u128);
// dbg!(a0[0] as u128 * y0);
// dbg!(a0[0] as u128 * z0);
// dbg!(a0[0] as u128 * y0 * z0);
// let a: Vec<u128> = itertools::multizip((a0, a1, a2))
// .map(|(a0_i, a1_i, a2_i)| {
// a0_i as u128 * y0 * z0 + a1_i as u128 * y1 * z1 + a2_i as u128 * y2 * z2
// })
// .collect();
// dbg!(&a);
// let Q = y2 * P2 as u128;
// let a: Vec<u128> = a.iter().map(|a_i| a_i % Q).collect();
// dbg!(&a);
// let q64 = 1_u128 << 64;
// let a: Vec<u64> = a.iter().map(|a_i| (a_i % q64) as u64).collect();
// a
/*
// x_i*z_i mod q_i
let r0: Vec<u64> = a_0.iter().map(|a_i| ((a_i * z0) % P0) * y0).collect();
let r1: Vec<u64> = a_1.iter().map(|a_i| ((a_i * z1) % P1) * y1).collect();
// let r0: Vec<u64> = a_0.iter().map(|a_i| ((a_i * z0) % P0) * y0).collect();
// let r1: Vec<u64> = a_1.iter().map(|a_i| ((a_i * z1) % P1) * y1).collect();
// let r2: Vec<u64> = a_2.iter().map(|a_i| ((a_i * y2_inv) % P2) * y2).collect();
// let r3: Vec<u64> = a_3.iter().map(|a_i| ((a_i * y3_inv) % P3) * y3).collect();
// let r4: Vec<u64> = a_4.iter().map(|a_i| ((a_i * y4_inv) % P4) * y4).collect();
let r: Vec<u64> = itertools::multizip((r0.iter(), r1.iter()))
.map(|(a, b)| a + b)
.collect();
// let r = r0;
//
dbg!(&r);
let p1p2: u128 = (P0 as u128) * (P1 as u128);
// let p1p2_inv: u128 = inv_mod((P0 % P1) as u128, P1) as u128;
let p1p2_inv: u128 = inv_mod((P0) as u128, P1) as u128;
dbg!(&p1p2);
dbg!(&p1p2_inv);
// let p1p2: u128 = P0 as u128 / 2; // PIHALF
let r = r
.iter()
.map(|c_i_u64| {
let c_i = *c_i_u64 as u128;
if c_i * 2 >= p1p2 {
// if c_i >= p1p2 {
c_i.wrapping_sub(p1p2) as u64
} else {
c_i as u64
}
})
.collect();
// let r: Vec<u64> = itertools::multizip((r0.iter(), r1.iter(), r2.iter(), r3.iter(), r4.iter()))
// .map(|(a, b, c, d, e)| a + b + c + d + e)
// .collect();
// let mut r = a_0 + y0_inv + a_1 * y1_inv + a_2 * y2_inv + a_3 * y3_inv + a_4 * y4_inv;
r
*/
}
fn exp_mod(q: u128, x: u128, k: u128) -> u128 {
// work on u128 to avoid overflow
let mut r = 1u128;
let mut x = x.clone();
let mut k = k.clone();
x = x % q;
// exponentiation by square strategy
while k > 0 {
if k % 2 == 1 {
r = (r * x) % q;
}
x = (x * x) % q;
k /= 2;
}
r
}
/// returns x^-1 mod Q
fn inv_mod(q: u128, x: u128) -> u128 {
// by Fermat's Little Theorem, x^-1 mod q \equiv x^{q-2} mod q
exp_mod(q, x, q - 2)
}
#[cfg(test)]
mod tests {
use super::*;
use rand_distr::Distribution;
use anyhow::Result;
#[test]
fn test_dbg() -> Result<()> {
println!("{}", 1u128 << 64);
let n: usize = 16;
println!("{}", P0);
println!("{}", P1);
// let q = 1u128 << 64;
// assert!(P0 as u128 * P1 as u128 > (n as u128 * (q * q)) / 2);
// let a: Vec<u64> = vec![1u64, 2, 3, 4];
// let a: Vec<u64> = vec![1u64, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
// let a: Vec<u64> = vec![9u64, 8, 7, 6, 0, 9999, 0, 0, 0, 0, 0, 0, 6, 7, 8, 9];
use rand::Rng;
let mut rng = rand::thread_rng();
let a: Vec<u64> = (0..n)
// .map(|_| rng.gen_range(0..=(1u64 << 57) - 1) - (1u64 << 56))
.map(|_| rng.gen_range(0..(1 << 61)))
.collect();
dbg!(a.len());
let a_ntt = NTT::ntt(n, &a);
dbg!(&a_ntt);
let a_intt = NTT::intt(n, &a_ntt);
dbg!(&a_intt);
assert_eq!(a_intt, a);
// unnecessary:
// let a: Vec<u64> = vec![2u64, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
// let a_ntt = NTT_p::ntt(P0, n, &a);
// dbg!(&a_ntt);
// let a_intt = NTT_p::intt(P0, n, &a_ntt);
// dbg!(&a_intt);
// NOTE: *n_inv is already done in the intt method.
// Multiplies the values by the inverse of the polynomial modulo the NTT modulus
// let n_inv = inv_mod(P0 as u128, n as u64); // n^-1 mod p0
// let a_new: Vec<u64> = a_0_intt
// .iter()
// .map(|a_i| ((*a_i as u128 * n_inv as u128) % P0 as u128) as u64)
// .collect();
// assert_eq!(a_intt, a);
Ok(())
}
}

+ 1
- 1
ckks/src/lib.rs

@ -259,7 +259,7 @@ mod tests {
#[test] #[test]
fn test_sub() -> Result<()> { fn test_sub() -> Result<()> {
let q: u64 = 2u64.pow(16) + 1; let q: u64 = 2u64.pow(16) + 1;
let n: usize = 16;
let n: usize = 8;
let t: u64 = 2; let t: u64 = 2;
let param = Param { let param = Param {
ring: RingParam { q, n }, ring: RingParam { q, n },

+ 1
- 1
tfhe/src/tggsw.rs

@ -41,7 +41,7 @@ impl TGGSW {
} }
} }
/// External product tggsw x tglwe
/// External product TGGSW x TGLWE
impl Mul<TGLWE> for TGGSW { impl Mul<TGLWE> for TGGSW {
type Output = TGLWE; type Output = TGLWE;

Loading…
Cancel
Save