|
|
@ -1,10 +1,183 @@ |
|
|
|
//! Implementation of BFV https://eprint.iacr.org/2012/144.pdf
|
|
|
|
//! Implementation of CKKS https://eprint.iacr.org/2016/421.pdf
|
|
|
|
#![allow(non_snake_case)]
|
|
|
|
#![allow(non_upper_case_globals)]
|
|
|
|
#![allow(non_camel_case_types)]
|
|
|
|
#![allow(clippy::upper_case_acronyms)]
|
|
|
|
#![allow(dead_code)] // TMP
|
|
|
|
|
|
|
|
pub mod encoder;
|
|
|
|
use arith::{Rq, C, R};
|
|
|
|
|
|
|
|
use anyhow::Result;
|
|
|
|
use rand::Rng;
|
|
|
|
use rand_distr::{Normal, Uniform};
|
|
|
|
|
|
|
|
pub mod encoder;
|
|
|
|
pub use encoder::Encoder;
|
|
|
|
|
|
|
|
// error deviation for the Gaussian(Normal) distribution
|
|
|
|
// sigma=3.2 from: https://eprint.iacr.org/2016/421.pdf page 17
|
|
|
|
const ERR_SIGMA: f64 = 3.2;
|
|
|
|
|
|
|
|
#[derive(Debug)]
|
|
|
|
pub struct PublicKey<const Q: u64, const N: usize>(Rq<Q, N>, Rq<Q, N>);
|
|
|
|
|
|
|
|
pub struct SecretKey<const Q: u64, const N: usize>(Rq<Q, N>);
|
|
|
|
|
|
|
|
pub struct CKKS<const Q: u64, const N: usize> {
|
|
|
|
encoder: Encoder<Q, N>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<const Q: u64, const N: usize> CKKS<Q, N> {
|
|
|
|
pub fn new(delta: C<f64>) -> Self {
|
|
|
|
let encoder = Encoder::<Q, N>::new(delta);
|
|
|
|
Self { encoder }
|
|
|
|
}
|
|
|
|
/// generate a new key pair (privK, pubK)
|
|
|
|
pub fn new_key(&self, mut rng: impl Rng) -> Result<(SecretKey<Q, N>, PublicKey<Q, N>)> {
|
|
|
|
let Xi_key = Uniform::new(-1_f64, 1_f64);
|
|
|
|
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
|
|
|
|
|
|
|
let e = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
|
|
|
|
|
|
|
let mut s = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
|
|
|
// since s is going to be multiplied by other Rq elements, already
|
|
|
|
// compute its NTT
|
|
|
|
s.compute_evals();
|
|
|
|
|
|
|
|
let a = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
|
|
|
|
|
|
|
let pk: PublicKey<Q, N> = PublicKey((&(-a) * &s) + e, a.clone());
|
|
|
|
Ok((SecretKey(s), pk))
|
|
|
|
}
|
|
|
|
|
|
|
|
// encrypts a plaintext \in R=Z_Q[X]/(X^N+1)
|
|
|
|
fn encrypt(
|
|
|
|
&self, // TODO maybe rm?
|
|
|
|
mut rng: impl Rng,
|
|
|
|
pk: &PublicKey<Q, N>,
|
|
|
|
m: &R<N>,
|
|
|
|
) -> Result<(Rq<Q, N>, Rq<Q, N>)> {
|
|
|
|
let Xi_key = Uniform::new(-1_f64, 1_f64);
|
|
|
|
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
|
|
|
|
|
|
|
let e_0 = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
|
|
|
let e_1 = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
|
|
|
|
|
|
|
let v = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
|
|
|
|
|
|
|
let m: Rq<Q, N> = Rq::<Q, N>::from(*m);
|
|
|
|
|
|
|
|
Ok((m + e_0 + v * pk.0.clone(), v * pk.1.clone() + e_1))
|
|
|
|
}
|
|
|
|
|
|
|
|
fn decrypt(
|
|
|
|
&self, // TODO maybe rm?
|
|
|
|
sk: SecretKey<Q, N>,
|
|
|
|
c: (Rq<Q, N>, Rq<Q, N>),
|
|
|
|
) -> Result<R<N>> {
|
|
|
|
let m = c.0.clone() + c.1 * sk.0;
|
|
|
|
Ok(m.mod_centered_q())
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn encode_and_encrypt(
|
|
|
|
&self,
|
|
|
|
mut rng: impl Rng,
|
|
|
|
pk: &PublicKey<Q, N>,
|
|
|
|
z: &[C<f64>],
|
|
|
|
) -> Result<(Rq<Q, N>, Rq<Q, N>)> {
|
|
|
|
let m: R<N> = self.encoder.encode(&z)?; // polynomial (encoded vec) \in R
|
|
|
|
|
|
|
|
self.encrypt(&mut rng, pk, &m)
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn decrypt_and_decode(
|
|
|
|
&self,
|
|
|
|
sk: SecretKey<Q, N>,
|
|
|
|
c: (Rq<Q, N>, Rq<Q, N>),
|
|
|
|
) -> Result<Vec<C<f64>>> {
|
|
|
|
let d = self.decrypt(sk, c)?;
|
|
|
|
|
|
|
|
self.encoder.decode(&d)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use super::*;
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_encrypt_decrypt() -> Result<()> {
|
|
|
|
const Q: u64 = 2u64.pow(16) + 1;
|
|
|
|
const T: u64 = 16;
|
|
|
|
const N: usize = 8;
|
|
|
|
let scale_factor_u64 = 512_u64; // delta
|
|
|
|
let scale_factor = C::<f64>::new(512.0, 0.0); // delta
|
|
|
|
|
|
|
|
let mut rng = rand::thread_rng();
|
|
|
|
|
|
|
|
for _ in 0..1000 {
|
|
|
|
let ckks = CKKS::<Q, N>::new(scale_factor);
|
|
|
|
|
|
|
|
let (sk, pk) = ckks.new_key(&mut rng)?;
|
|
|
|
|
|
|
|
let m_raw: R<N> = Rq::<Q, N>::rand_f64(&mut rng, Uniform::new(0_f64, T as f64))?.to_r();
|
|
|
|
let m = m_raw * scale_factor_u64;
|
|
|
|
|
|
|
|
let ct = ckks.encrypt(&mut rng, &pk, &m)?;
|
|
|
|
let m_decrypted = ckks.decrypt(sk, ct)?;
|
|
|
|
|
|
|
|
let m_decrypted: Vec<u64> = m_decrypted
|
|
|
|
.coeffs()
|
|
|
|
.iter()
|
|
|
|
.map(|e| (*e as f64 / (scale_factor_u64 as f64)).round() as u64)
|
|
|
|
.collect();
|
|
|
|
let m_decrypted = Rq::<Q, N>::from_vec_u64(m_decrypted);
|
|
|
|
assert_eq!(m_decrypted, Rq::<Q, N>::from(m_raw));
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_encode_encrypt_decrypt_decode() -> Result<()> {
|
|
|
|
const Q: u64 = 2u64.pow(16) + 1;
|
|
|
|
const T: u64 = 16;
|
|
|
|
const N: usize = 4;
|
|
|
|
let scale_factor = C::<f64>::new(512.0, 0.0); // delta
|
|
|
|
|
|
|
|
let mut rng = rand::thread_rng();
|
|
|
|
|
|
|
|
for _ in 0..1000 {
|
|
|
|
let ckks = CKKS::<Q, N>::new(scale_factor);
|
|
|
|
let (sk, pk) = ckks.new_key(&mut rng)?;
|
|
|
|
|
|
|
|
let z: Vec<C<f64>> = std::iter::repeat_with(|| C::<f64>::rand(&mut rng, T))
|
|
|
|
.take(N / 2)
|
|
|
|
.collect();
|
|
|
|
let m: R<N> = ckks.encoder.encode(&z)?;
|
|
|
|
|
|
|
|
// sanity check
|
|
|
|
{
|
|
|
|
let z_decoded = ckks.encoder.decode(&m)?;
|
|
|
|
let rounded_z_decoded: Vec<C<f64>> = z_decoded
|
|
|
|
.iter()
|
|
|
|
.map(|c| C::<f64>::new(c.re.round(), c.im.round()))
|
|
|
|
.collect();
|
|
|
|
assert_eq!(rounded_z_decoded, z);
|
|
|
|
}
|
|
|
|
|
|
|
|
let ct = ckks.encrypt(&mut rng, &pk, &m)?;
|
|
|
|
let m_decrypted = ckks.decrypt(sk, ct)?;
|
|
|
|
|
|
|
|
let z_decrypted = ckks.encoder.decode(&m_decrypted)?;
|
|
|
|
|
|
|
|
let rounded_z_decrypted: Vec<C<f64>> = z_decrypted
|
|
|
|
.iter()
|
|
|
|
.map(|&c| C::<f64>::new(c.re.round(), c.im.round()))
|
|
|
|
.collect();
|
|
|
|
assert_eq!(rounded_z_decrypted, z);
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
}
|