Browse Source

add TGLWE logic (pending to abstract it with TLWE to reuse part of the impl)

main
arnaucube 1 week ago
parent
commit
752525a1c6
2 changed files with 249 additions and 0 deletions
  1. +1
    -0
      tfhe/src/lib.rs
  2. +248
    -0
      tfhe/src/tglwe.rs

+ 1
- 0
tfhe/src/lib.rs

@ -5,6 +5,7 @@
#![allow(clippy::upper_case_acronyms)]
#![allow(dead_code)] // TMP
pub mod tglwe;
pub mod tgsw;
pub mod tlev;
pub mod tlwe;

+ 248
- 0
tfhe/src/tglwe.rs

@ -0,0 +1,248 @@
use anyhow::Result;
use itertools::zip_eq;
use rand::distributions::Standard;
use rand::Rng;
use rand_distr::{Normal, Uniform};
use std::array;
use std::iter::Sum;
use std::ops::{Add, AddAssign, Mul, Sub};
use arith::{Ring, Rq, Tn, T64, TR};
use gfhe::{glwe, GLWE};
use crate::tlev::TLev;
pub type SecretKey<const N: usize, const K: usize> = glwe::SecretKey<Tn<N>, K>;
pub type PublicKey<const N: usize, const K: usize> = glwe::PublicKey<Tn<N>, K>;
#[derive(Clone, Debug)]
pub struct TGLWE<const N: usize, const K: usize>(pub GLWE<Tn<N>, K>);
impl<const N: usize, const K: usize> TGLWE<N, K> {
pub fn zero() -> Self {
Self(GLWE::<Tn<N>, K>::zero())
}
pub fn new_key(rng: impl Rng) -> Result<(SecretKey<N, K>, PublicKey<N, K>)> {
let (sk, pk) = GLWE::new_key(rng)?;
// Ok((SecretKey(sk), PublicKey(pk)))
Ok((sk, pk))
}
pub fn encode<const P: u64>(m: &Rq<P, N>) -> Tn<N> {
let delta = u64::MAX / P; // floored
let coeffs = m.coeffs();
Tn(array::from_fn(|i| T64(coeffs[i].0 * delta)))
}
pub fn decode<const P: u64>(p: &Tn<N>) -> Rq<P, N> {
let p = p.mul_div_round(P, u64::MAX);
Rq::<P, N>::from_vec_u64(p.coeffs().iter().map(|c| c.0).collect())
}
// encrypts with the given SecretKey (instead of PublicKey)
pub fn encrypt_s(rng: impl Rng, sk: &SecretKey<N, K>, p: &Tn<N>) -> Result<Self> {
let glwe = GLWE::encrypt_s(rng, &sk, p)?;
Ok(Self(glwe))
}
pub fn encrypt(rng: impl Rng, pk: &PublicKey<N, K>, p: &Tn<N>) -> Result<Self> {
let glwe = GLWE::encrypt(rng, &pk, p)?;
Ok(Self(glwe))
}
pub fn decrypt(&self, sk: &SecretKey<N, K>) -> Tn<N> {
self.0.decrypt(&sk)
}
}
impl<const N: usize, const K: usize> Add<TGLWE<N, K>> for TGLWE<N, K> {
type Output = Self;
fn add(self, other: Self) -> Self {
Self(self.0 + other.0)
}
}
impl<const N: usize, const K: usize> AddAssign for TGLWE<N, K> {
fn add_assign(&mut self, rhs: Self) {
self.0 += rhs.0
}
}
impl<const N: usize, const K: usize> Sum<TGLWE<N, K>> for TGLWE<N, K> {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
let mut acc = TGLWE::<N, K>::zero();
for e in iter {
acc += e;
}
acc
}
}
impl<const N: usize, const K: usize> Sub<TGLWE<N, K>> for TGLWE<N, K> {
type Output = Self;
fn sub(self, other: Self) -> Self {
Self(self.0 - other.0)
}
}
// plaintext addition
impl<const N: usize, const K: usize> Add<Tn<N>> for TGLWE<N, K> {
type Output = Self;
fn add(self, plaintext: Tn<N>) -> Self {
let a: TR<Tn<N>, K> = self.0 .0;
let b: Tn<N> = self.0 .1 + plaintext;
Self(GLWE(a, b))
}
}
// plaintext substraction
impl<const N: usize, const K: usize> Sub<Tn<N>> for TGLWE<N, K> {
type Output = Self;
fn sub(self, plaintext: Tn<N>) -> Self {
let a: TR<Tn<N>, K> = self.0 .0;
let b: Tn<N> = self.0 .1 - plaintext;
Self(GLWE(a, b))
}
}
// plaintext multiplication
impl<const N: usize, const K: usize> Mul<Tn<N>> for TGLWE<N, K> {
type Output = Self;
fn mul(self, plaintext: Tn<N>) -> Self {
let a: TR<Tn<N>, K> = TR(self.0 .0 .0.iter().map(|r_i| *r_i * plaintext).collect());
let b: Tn<N> = self.0 .1 * plaintext;
Self(GLWE(a, b))
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use rand::distributions::Uniform;
use super::*;
#[test]
fn test_encrypt_decrypt() -> Result<()> {
const T: u64 = 128; // msg space (msg modulus)
const N: usize = 64;
const K: usize = 16;
type S = TGLWE<N, K>;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let p: Tn<N> = S::encode::<T>(&m);
let c = S::encrypt(&mut rng, &pk, &p)?;
let p_recovered = c.decrypt(&sk);
let m_recovered = S::decode::<T>(&p_recovered);
assert_eq!(m, m_recovered);
// same but using encrypt_s (with sk instead of pk))
let c = S::encrypt_s(&mut rng, &sk, &p)?;
let p_recovered = c.decrypt(&sk);
let m_recovered = S::decode::<T>(&p_recovered);
assert_eq!(m, m_recovered);
}
Ok(())
}
#[test]
fn test_addition() -> Result<()> {
const T: u64 = 128;
const N: usize = 64;
const K: usize = 16;
type S = TGLWE<N, K>;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let p1: Tn<N> = S::encode::<T>(&m1); // plaintext
let p2: Tn<N> = S::encode::<T>(&m2); // plaintext
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
let c2 = S::encrypt(&mut rng, &pk, &p2)?;
let c3 = c1 + c2;
let p3_recovered = c3.decrypt(&sk);
let m3_recovered = S::decode::<T>(&p3_recovered);
assert_eq!((m1 + m2).remodule::<T>(), m3_recovered.remodule::<T>());
}
Ok(())
}
#[test]
fn test_add_plaintext() -> Result<()> {
const T: u64 = 128;
const N: usize = 64;
const K: usize = 16;
type S = TGLWE<N, K>;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let p1: Tn<N> = S::encode::<T>(&m1); // plaintext
let p2: Tn<N> = S::encode::<T>(&m2); // plaintext
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
let c3 = c1 + p2;
let p3_recovered = c3.decrypt(&sk);
let m3_recovered = S::decode::<T>(&p3_recovered);
assert_eq!(m1 + m2, m3_recovered);
}
Ok(())
}
#[test]
fn test_mul_plaintext() -> Result<()> {
const T: u64 = 128;
const N: usize = 64;
const K: usize = 16;
type S = TGLWE<N, K>;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
for _ in 0..200 {
let (sk, pk) = S::new_key(&mut rng)?;
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let p1: Tn<N> = S::encode::<T>(&m1);
// don't scale up p2, set it directly from m2
let p2: Tn<N> = Tn(array::from_fn(|i| T64(m2.coeffs()[i].0)));
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
let c3 = c1 * p2;
let p3_recovered: Tn<N> = c3.decrypt(&sk);
let m3_recovered = S::decode::<T>(&p3_recovered);
assert_eq!((m1.to_r() * m2.to_r()).to_rq::<T>(), m3_recovered);
}
Ok(())
}
}

Loading…
Cancel
Save