mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-23 20:23:54 +01:00
adapt gfhe to work with Ring trait, so that it can work with Rq & Tn (for TFHE)
This commit is contained in:
@@ -3,7 +3,10 @@ use std::fmt::Debug;
|
||||
use std::iter::Sum;
|
||||
use std::ops::{Add, AddAssign, Mul, Sub, SubAssign};
|
||||
|
||||
/// Represents a ring element. Currently implemented by ring_n.rs#R and ring_nq.rs#Rq.
|
||||
/// Represents a ring element. Currently implemented by ring_n.rs#R and
|
||||
/// ring_nq.rs#Rq. Is not a 'pure algebraic ring', but more a custom trait
|
||||
/// definition which includes methods like `mod_switch`.
|
||||
// assumed to be mod (X^N +1)
|
||||
pub trait Ring:
|
||||
Sized
|
||||
+ Add<Output = Self>
|
||||
@@ -11,17 +14,22 @@ pub trait Ring:
|
||||
+ Sum
|
||||
+ Sub<Output = Self>
|
||||
+ SubAssign
|
||||
+ Mul<Output = Self>
|
||||
+ Mul<u64, Output = Self> // scalar mul
|
||||
+ Mul<Output = Self> // internal product
|
||||
+ Mul<u64, Output = Self> // scalar mul, external product
|
||||
+ Mul<Self::C, Output = Self>
|
||||
+ PartialEq
|
||||
+ Debug
|
||||
+ Clone
|
||||
+ Copy
|
||||
+ Sum<<Self as Add>::Output>
|
||||
+ Sum<<Self as Mul>::Output>
|
||||
{
|
||||
/// C defines the coefficient type
|
||||
type C: Debug + Clone;
|
||||
|
||||
const Q: u64;
|
||||
const N: usize;
|
||||
|
||||
fn coeffs(&self) -> Vec<Self::C>;
|
||||
fn zero() -> Self;
|
||||
// note/wip/warning: dist (0,q) with f64, will output more '0=q' elements than other values
|
||||
@@ -31,6 +39,9 @@ pub trait Ring:
|
||||
|
||||
fn decompose(&self, beta: u32, l: u32) -> Vec<Self>;
|
||||
|
||||
fn remodule<const P: u64>(&self) -> impl Ring;
|
||||
fn mod_switch<const P: u64>(&self) -> impl Ring;
|
||||
|
||||
/// returns [ [(num/den) * self].round() ] mod q
|
||||
/// ie. performs the multiplication and division over f64, and then it
|
||||
/// rounds the result, only applying the mod Q (if the ring is mod Q) at the
|
||||
|
||||
@@ -15,9 +15,13 @@ use crate::Ring;
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct R<const N: usize>(pub [i64; N]);
|
||||
|
||||
impl<const N: usize> Ring for R<N> {
|
||||
type C = i64;
|
||||
fn coeffs(&self) -> Vec<Self::C> {
|
||||
// impl<const N: usize> Ring for R<N> {
|
||||
impl<const N: usize> R<N> {
|
||||
// type C = i64;
|
||||
// const Q: u64 = i64::MAX as u64; // WIP
|
||||
// const N: usize = N;
|
||||
|
||||
pub fn coeffs(&self) -> Vec<i64> {
|
||||
self.0.to_vec()
|
||||
}
|
||||
fn zero() -> Self {
|
||||
@@ -32,30 +36,39 @@ impl<const N: usize> Ring for R<N> {
|
||||
// Self(coeffs)
|
||||
}
|
||||
|
||||
fn from_vec(coeffs: Vec<Self::C>) -> Self {
|
||||
pub fn from_vec(coeffs: Vec<i64>) -> Self {
|
||||
let mut p = coeffs;
|
||||
modulus::<N>(&mut p);
|
||||
Self(array::from_fn(|i| p[i]))
|
||||
}
|
||||
|
||||
/*
|
||||
// returns the decomposition of each polynomial coefficient
|
||||
fn decompose(&self, beta: u32, l: u32) -> Vec<Self> {
|
||||
unimplemented!();
|
||||
// array::from_fn(|i| self.coeffs[i].decompose(beta, l))
|
||||
}
|
||||
|
||||
// performs the multiplication and division over f64, and then it rounds the
|
||||
// result, only applying the mod Q at the end
|
||||
fn remodule<const P: u64>(&self) -> impl Ring {
|
||||
unimplemented!()
|
||||
}
|
||||
fn mod_switch<const P: u64, const M: usize>(&self) -> R<N> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
/// performs the multiplication and division over f64, and then it rounds the
|
||||
/// result, only applying the mod Q at the end
|
||||
fn mul_div_round(&self, num: u64, den: u64) -> Self {
|
||||
unimplemented!()
|
||||
// fn mul_div_round<const Q: u64>(&self, num: u64, den: u64) -> crate::Rq<Q, N> {
|
||||
// let r: Vec<f64> = self
|
||||
// .coeffs()
|
||||
// .iter()
|
||||
// .map(|e| ((num as f64 * *e as f64) / den as f64).round())
|
||||
// .collect();
|
||||
// crate::Rq::<Q, N>::from_vec_f64(r)
|
||||
// let r: Vec<f64> = self
|
||||
// .coeffs()
|
||||
// .iter()
|
||||
// .map(|e| ((num as f64 * *e as f64) / den as f64).round())
|
||||
// .collect();
|
||||
// crate::Rq::<Q, N>::from_vec_f64(r)
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> From<crate::ring_nq::Rq<Q, N>> for R<N> {
|
||||
@@ -65,9 +78,9 @@ impl<const Q: u64, const N: usize> From<crate::ring_nq::Rq<Q, N>> for R<N> {
|
||||
}
|
||||
|
||||
impl<const N: usize> R<N> {
|
||||
pub fn coeffs(&self) -> [i64; N] {
|
||||
self.0
|
||||
}
|
||||
// pub fn coeffs(&self) -> [i64; N] {
|
||||
// self.0
|
||||
// }
|
||||
pub fn to_rq<const Q: u64>(self) -> crate::Rq<Q, N> {
|
||||
crate::Rq::<Q, N>::from(self)
|
||||
}
|
||||
@@ -318,6 +331,13 @@ pub fn mod_centered_q<const Q: u64, const N: usize>(p: Vec<i128>) -> R<N> {
|
||||
R::<N>::from_vec(r.iter().map(|v| *v as i64).collect::<Vec<i64>>())
|
||||
}
|
||||
|
||||
impl<const N: usize> Mul<i64> for R<N> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, s: i64) -> Self {
|
||||
self.mul_by_i64(s)
|
||||
}
|
||||
}
|
||||
// mul by u64
|
||||
impl<const N: usize> Mul<u64> for R<N> {
|
||||
type Output = Self;
|
||||
|
||||
@@ -30,6 +30,9 @@ pub struct Rq<const Q: u64, const N: usize> {
|
||||
impl<const Q: u64, const N: usize> Ring for Rq<Q, N> {
|
||||
type C = Zq<Q>;
|
||||
|
||||
const Q: u64 = Q;
|
||||
const N: usize = N;
|
||||
|
||||
fn coeffs(&self) -> Vec<Self::C> {
|
||||
self.coeffs.to_vec()
|
||||
}
|
||||
@@ -71,9 +74,26 @@ impl<const Q: u64, const N: usize> Ring for Rq<Q, N> {
|
||||
r.iter().map(|a_i| Self::from_vec(a_i.clone())).collect()
|
||||
}
|
||||
|
||||
// returns [ [(num/den) * self].round() ] mod q
|
||||
// ie. performs the multiplication and division over f64, and then it rounds the
|
||||
// result, only applying the mod Q at the end
|
||||
// Warning: this method will behave differently depending on the values P and Q:
|
||||
// if Q<P, it just 'renames' the modulus parameter to P
|
||||
// if Q>=P, it crops to mod P
|
||||
fn remodule<const P: u64>(&self) -> Rq<P, N> {
|
||||
Rq::<P, N>::from_vec_u64(self.coeffs().iter().map(|m_i| m_i.0).collect())
|
||||
}
|
||||
|
||||
/// perform the mod switch operation from Q to Q', where Q2=Q'
|
||||
// fn mod_switch<const P: u64, const M: usize>(&self) -> impl Ring {
|
||||
fn mod_switch<const P: u64>(&self) -> Rq<P, N> {
|
||||
// assert_eq!(N, M); // sanity check
|
||||
Rq::<P, N> {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i].mod_switch::<P>()),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
|
||||
/// returns [ [(num/den) * self].round() ] mod q
|
||||
/// ie. performs the multiplication and division over f64, and then it rounds the
|
||||
/// result, only applying the mod Q at the end
|
||||
fn mul_div_round(&self, num: u64, den: u64) -> Self {
|
||||
let r: Vec<f64> = self
|
||||
.coeffs()
|
||||
@@ -183,17 +203,9 @@ impl<const Q: u64, const N: usize> Rq<Q, N> {
|
||||
// Warning: this method will behave differently depending on the values P and Q:
|
||||
// if Q<P, it just 'renames' the modulus parameter to P
|
||||
// if Q>=P, it crops to mod P
|
||||
pub fn remodule<const P: u64>(&self) -> Rq<P, N> {
|
||||
Rq::<P, N>::from_vec_u64(self.coeffs().iter().map(|m_i| m_i.0).collect())
|
||||
}
|
||||
|
||||
/// perform the mod switch operation from Q to Q', where Q2=Q'
|
||||
pub fn mod_switch<const Q2: u64>(&self) -> Rq<Q2, N> {
|
||||
Rq::<Q2, N> {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i].mod_switch::<Q2>()),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
// pub fn remodule<const P: u64>(&self) -> Rq<P, N> {
|
||||
// Rq::<P, N>::from_vec_u64(self.coeffs().iter().map(|m_i| m_i.0).collect())
|
||||
// }
|
||||
|
||||
// applies mod(T) to all coefficients of self
|
||||
pub fn coeffs_mod<const T: u64>(&self) -> Self {
|
||||
|
||||
@@ -12,7 +12,7 @@ use std::array;
|
||||
use std::iter::Sum;
|
||||
use std::ops::{Add, AddAssign, Mul, Sub, SubAssign};
|
||||
|
||||
use crate::{ring::Ring, torus::T64};
|
||||
use crate::{ring::Ring, torus::T64, Rq, Zq};
|
||||
|
||||
/// 𝕋_<N,Q>[X] = 𝕋<Q>[X]/(X^N +1), polynomials modulo X^N+1 with coefficients in
|
||||
/// 𝕋, where Q=2^64.
|
||||
@@ -22,6 +22,9 @@ pub struct Tn<const N: usize>(pub [T64; N]);
|
||||
impl<const N: usize> Ring for Tn<N> {
|
||||
type C = T64;
|
||||
|
||||
const Q: u64 = u64::MAX; // WIP
|
||||
const N: usize = N;
|
||||
|
||||
fn coeffs(&self) -> Vec<T64> {
|
||||
self.0.to_vec()
|
||||
}
|
||||
@@ -50,6 +53,22 @@ impl<const N: usize> Ring for Tn<N> {
|
||||
r.iter().map(|a_i| Self::from_vec(a_i.clone())).collect()
|
||||
}
|
||||
|
||||
fn remodule<const P: u64>(&self) -> Tn<N> {
|
||||
todo!()
|
||||
// Rq::<P, N>::from_vec_u64(self.coeffs().iter().map(|m_i| m_i.0).collect())
|
||||
}
|
||||
|
||||
// fn mod_switch<const P: u64>(&self) -> impl Ring {
|
||||
fn mod_switch<const P: u64>(&self) -> Rq<P, N> {
|
||||
// unimplemented!()
|
||||
// TODO WIP
|
||||
let coeffs = array::from_fn(|i| Zq::<P>::from_u64(self.0[i].mod_switch::<P>().0));
|
||||
Rq::<P, N> {
|
||||
coeffs,
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
|
||||
/// returns [ [(num/den) * self].round() ] mod q
|
||||
/// ie. performs the multiplication and division over f64, and then it rounds the
|
||||
/// result, only applying the mod Q at the end
|
||||
@@ -174,12 +193,19 @@ fn modulus_u128<const N: usize>(p: &mut Vec<u128>) {
|
||||
return;
|
||||
}
|
||||
for i in N..p.len() {
|
||||
p[i - N] = p[i - N].clone() - p[i].clone();
|
||||
// p[i - N] = p[i - N].clone() - p[i].clone();
|
||||
p[i - N] = p[i - N].wrapping_sub(p[i]);
|
||||
p[i] = 0;
|
||||
}
|
||||
p.truncate(N);
|
||||
}
|
||||
|
||||
impl<const N: usize> Mul<T64> for Tn<N> {
|
||||
type Output = Self;
|
||||
fn mul(self, s: T64) -> Self {
|
||||
Self(array::from_fn(|i| self.0[i] * s))
|
||||
}
|
||||
}
|
||||
// mul by u64
|
||||
impl<const N: usize> Mul<u64> for Tn<N> {
|
||||
type Output = Self;
|
||||
|
||||
@@ -33,6 +33,9 @@ impl T64 {
|
||||
.map(|i| T64(((self.0 >> i) & 1) as u64))
|
||||
.collect()
|
||||
}
|
||||
pub fn mod_switch<const Q2: u64>(&self) -> T64 {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<T64> for T64 {
|
||||
|
||||
@@ -3,7 +3,7 @@ use rand::Rng;
|
||||
use rand_distr::{Normal, Uniform};
|
||||
use std::ops::{Add, Mul};
|
||||
|
||||
use arith::{Ring, Rq, TR};
|
||||
use arith::{Ring, TR};
|
||||
|
||||
use crate::glwe::{PublicKey, SecretKey, GLWE};
|
||||
|
||||
@@ -11,25 +11,19 @@ const ERR_SIGMA: f64 = 3.2;
|
||||
|
||||
// l GLWEs
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct GLev<const Q: u64, const N: usize, const K: usize>(pub(crate) Vec<GLWE<Q, N, K>>);
|
||||
pub struct GLev<R: Ring, const K: usize>(pub(crate) Vec<GLWE<R, K>>);
|
||||
|
||||
impl<const Q: u64, const N: usize, const K: usize> GLev<Q, N, K> {
|
||||
pub fn encode<const T: u64>(m: &Rq<T, N>) -> Rq<Q, N> {
|
||||
m.remodule::<Q>()
|
||||
}
|
||||
pub fn decode<const T: u64>(p: &Rq<Q, N>) -> Rq<T, N> {
|
||||
p.remodule::<T>()
|
||||
}
|
||||
impl<R: Ring, const K: usize> GLev<R, K> {
|
||||
pub fn encrypt(
|
||||
mut rng: impl Rng,
|
||||
beta: u32,
|
||||
l: u32,
|
||||
pk: &PublicKey<Q, N, K>,
|
||||
m: &Rq<Q, N>,
|
||||
pk: &PublicKey<R, K>,
|
||||
m: &R,
|
||||
) -> Result<Self> {
|
||||
let glev: Vec<GLWE<Q, N, K>> = (1..l + 1)
|
||||
let glev: Vec<GLWE<R, K>> = (0..l)
|
||||
.map(|i| {
|
||||
GLWE::<Q, N, K>::encrypt(&mut rng, pk, &(*m * (Q / beta.pow(i as u32) as u64)))
|
||||
GLWE::<R, K>::encrypt(&mut rng, pk, &(*m * (R::Q / beta.pow(i as u32) as u64)))
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
@@ -39,21 +33,22 @@ impl<const Q: u64, const N: usize, const K: usize> GLev<Q, N, K> {
|
||||
mut rng: impl Rng,
|
||||
beta: u32,
|
||||
l: u32,
|
||||
sk: &SecretKey<Q, N, K>,
|
||||
m: &Rq<Q, N>,
|
||||
sk: &SecretKey<R, K>,
|
||||
m: &R,
|
||||
// delta: u64,
|
||||
) -> Result<Self> {
|
||||
let glev: Vec<GLWE<Q, N, K>> = (1..l + 1)
|
||||
let glev: Vec<GLWE<R, K>> = (1..l + 1)
|
||||
.map(|i| {
|
||||
GLWE::<Q, N, K>::encrypt_s(&mut rng, sk, &(*m * (Q / beta.pow(i as u32) as u64)))
|
||||
GLWE::<R, K>::encrypt_s(&mut rng, sk, &(*m * (R::Q / beta.pow(i as u32) as u64)))
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
Ok(Self(glev))
|
||||
}
|
||||
|
||||
pub fn decrypt<const T: u64>(&self, sk: &SecretKey<Q, N, K>, beta: u32) -> Rq<Q, N> {
|
||||
let pt = self.0[0].decrypt(sk);
|
||||
pt.mul_div_round(beta as u64, Q)
|
||||
pub fn decrypt<const T: u64>(&self, sk: &SecretKey<R, K>, beta: u32) -> R {
|
||||
let pt = self.0[1].decrypt(sk);
|
||||
pt.mul_div_round(beta as u64, R::Q)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -63,6 +58,7 @@ mod tests {
|
||||
use rand::distributions::Uniform;
|
||||
|
||||
use super::*;
|
||||
use arith::Rq;
|
||||
|
||||
#[test]
|
||||
fn test_encrypt_decrypt() -> Result<()> {
|
||||
@@ -70,25 +66,25 @@ mod tests {
|
||||
const N: usize = 128;
|
||||
const T: u64 = 2; // plaintext modulus
|
||||
const K: usize = 16;
|
||||
type S = GLev<Q, N, K>;
|
||||
type S = GLev<Rq<Q, N>, K>;
|
||||
|
||||
let beta: u32 = 2;
|
||||
let l: u32 = 16;
|
||||
|
||||
// let delta: u64 = Q / T; // floored
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..200 {
|
||||
let (sk, pk) = GLWE::<Q, N, K>::new_key(&mut rng)?;
|
||||
let (sk, pk) = GLWE::<Rq<Q, N>, K>::new_key(&mut rng)?;
|
||||
|
||||
let msg_dist = Uniform::new(0_u64, T);
|
||||
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||
let p: Rq<Q, N> = S::encode::<T>(&m); // plaintext
|
||||
let m: Rq<Q, N> = m.remodule::<Q>();
|
||||
|
||||
let c = S::encrypt(&mut rng, beta, l, &pk, &p)?;
|
||||
let p_recovered = c.decrypt::<T>(&sk, beta);
|
||||
let m_recovered = S::decode::<T>(&p_recovered);
|
||||
let c = S::encrypt(&mut rng, beta, l, &pk, &m)?;
|
||||
let m_recovered = c.decrypt::<T>(&sk, beta);
|
||||
|
||||
assert_eq!(m, m_recovered);
|
||||
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
||||
}
|
||||
|
||||
Ok(())
|
||||
|
||||
330
gfhe/src/glwe.rs
330
gfhe/src/glwe.rs
@@ -1,3 +1,6 @@
|
||||
//! Generalized LWE.
|
||||
//!
|
||||
|
||||
use anyhow::Result;
|
||||
use itertools::zip_eq;
|
||||
use rand::Rng;
|
||||
@@ -11,32 +14,34 @@ use crate::glev::GLev;
|
||||
|
||||
const ERR_SIGMA: f64 = 3.2;
|
||||
|
||||
/// GLWE implemented over the `Ring` trait, so that it can be also instantiated
|
||||
/// over the Torus polynomials 𝕋_<N,q>[X] = 𝕋_q[X]/ (X^N+1).
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct GLWE<const Q: u64, const N: usize, const K: usize>(TR<Rq<Q, N>, K>, Rq<Q, N>);
|
||||
pub struct GLWE<R: Ring, const K: usize>(TR<R, K>, R);
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SecretKey<const Q: u64, const N: usize, const K: usize>(TR<Rq<Q, N>, K>);
|
||||
pub struct SecretKey<R: Ring, const K: usize>(TR<R, K>);
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct PublicKey<const Q: u64, const N: usize, const K: usize>(Rq<Q, N>, TR<Rq<Q, N>, K>);
|
||||
pub struct PublicKey<R: Ring, const K: usize>(R, TR<R, K>);
|
||||
|
||||
// K GLevs, each KSK_i=l GLWEs
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct KSK<const Q: u64, const N: usize, const K: usize>(Vec<GLev<Q, N, K>>);
|
||||
pub struct KSK<R: Ring, const K: usize>(Vec<GLev<R, K>>);
|
||||
|
||||
impl<const Q: u64, const N: usize, const K: usize> GLWE<Q, N, K> {
|
||||
impl<R: Ring, const K: usize> GLWE<R, K> {
|
||||
pub fn zero() -> Self {
|
||||
Self(TR::zero(), Rq::zero())
|
||||
Self(TR::zero(), R::zero())
|
||||
}
|
||||
|
||||
pub fn new_key(mut rng: impl Rng) -> Result<(SecretKey<Q, N, K>, PublicKey<Q, N, K>)> {
|
||||
pub fn new_key(mut rng: impl Rng) -> Result<(SecretKey<R, K>, PublicKey<R, K>)> {
|
||||
let Xi_key = Uniform::new(0_f64, 2_f64);
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
|
||||
let s: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Xi_key);
|
||||
let a: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Uniform::new(0_f64, Q as f64));
|
||||
let e = Rq::<Q, N>::rand(&mut rng, Xi_err);
|
||||
let s: TR<R, K> = TR::rand(&mut rng, Xi_key);
|
||||
let a: TR<R, K> = TR::rand(&mut rng, Uniform::new(0_f64, R::Q as f64));
|
||||
let e = R::rand(&mut rng, Xi_err);
|
||||
|
||||
let pk: PublicKey<Q, N, K> = PublicKey((&a * &s) + e, a);
|
||||
let pk: PublicKey<R, K> = PublicKey((&a * &s) + e, a);
|
||||
Ok((SecretKey(s), pk))
|
||||
}
|
||||
|
||||
@@ -44,42 +49,85 @@ impl<const Q: u64, const N: usize, const K: usize> GLWE<Q, N, K> {
|
||||
mut rng: impl Rng,
|
||||
beta: u32,
|
||||
l: u32,
|
||||
sk: &SecretKey<Q, N, K>,
|
||||
new_sk: &SecretKey<Q, N, K>,
|
||||
) -> Result<KSK<Q, N, K>> {
|
||||
let r: Vec<GLev<Q, N, K>> = (0..K)
|
||||
sk: &SecretKey<R, K>,
|
||||
new_sk: &SecretKey<R, K>,
|
||||
) -> Result<KSK<R, K>> {
|
||||
let r: Vec<GLev<R, K>> = (0..K)
|
||||
.into_iter()
|
||||
.map(|i|
|
||||
// treat sk_i as the msg being encrypted
|
||||
GLev::<Q, N, K>::encrypt_s(&mut rng, beta, l, &new_sk, &sk.0 .0[i]))
|
||||
GLev::<R, K>::encrypt_s(&mut rng, beta, l, &new_sk, &sk.0 .0[i]))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
Ok(KSK(r))
|
||||
}
|
||||
pub fn key_switch(&self, beta: u32, l: u32, ksk: &KSK<Q, N, K>) -> Self {
|
||||
let (a, b): (TR<Rq<Q, N>, K>, Rq<Q, N>) = (self.0.clone(), self.1);
|
||||
pub fn key_switch(&self, beta: u32, l: u32, ksk: &KSK<R, K>) -> Self {
|
||||
let (a, b): (TR<R, K>, R) = (self.0.clone(), self.1);
|
||||
|
||||
let lhs: GLWE<Q, N, K> = GLWE(TR::zero(), b);
|
||||
let lhs: GLWE<R, K> = GLWE(TR::zero(), b);
|
||||
|
||||
// K iterations, ksk.0 contains K times GLev
|
||||
let rhs: GLWE<Q, N, K> = zip_eq(a.0, ksk.0.clone())
|
||||
let rhs: GLWE<R, K> = zip_eq(a.0, ksk.0.clone())
|
||||
.map(|(a_i, ksk_i)| Self::dot_prod(a_i.decompose(beta, l), ksk_i))
|
||||
.sum();
|
||||
|
||||
lhs - rhs
|
||||
}
|
||||
// note: a_decomp is of length N
|
||||
fn dot_prod(a_decomp: Vec<Rq<Q, N>>, ksk_i: GLev<Q, N, K>) -> GLWE<Q, N, K> {
|
||||
fn dot_prod(a_decomp: Vec<R>, ksk_i: GLev<R, K>) -> GLWE<R, K> {
|
||||
// l times GLWES
|
||||
let glwes: Vec<GLWE<Q, N, K>> = ksk_i.0;
|
||||
let glwes: Vec<GLWE<R, K>> = ksk_i.0;
|
||||
|
||||
// l iterations
|
||||
let r: GLWE<Q, N, K> = zip_eq(a_decomp, glwes)
|
||||
let r: GLWE<R, K> = zip_eq(a_decomp, glwes)
|
||||
.map(|(a_d_i, glwe_i)| glwe_i * a_d_i)
|
||||
.sum();
|
||||
r
|
||||
}
|
||||
|
||||
// encrypts with the given SecretKey (instead of PublicKey)
|
||||
pub fn encrypt_s(
|
||||
mut rng: impl Rng,
|
||||
sk: &SecretKey<R, K>,
|
||||
m: &R, // already scaled
|
||||
) -> Result<Self> {
|
||||
let Xi_key = Uniform::new(0_f64, 2_f64);
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
|
||||
let a: TR<R, K> = TR::rand(&mut rng, Xi_key);
|
||||
let e = R::rand(&mut rng, Xi_err);
|
||||
|
||||
let b: R = (&a * &sk.0) + *m + e;
|
||||
Ok(Self(a, b))
|
||||
}
|
||||
pub fn encrypt(
|
||||
mut rng: impl Rng,
|
||||
pk: &PublicKey<R, K>,
|
||||
m: &R, // already scaled
|
||||
) -> Result<Self> {
|
||||
let Xi_key = Uniform::new(0_f64, 2_f64);
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
|
||||
let u: R = R::rand(&mut rng, Xi_key);
|
||||
|
||||
let e0 = R::rand(&mut rng, Xi_err);
|
||||
let e1 = TR::<R, K>::rand(&mut rng, Xi_err);
|
||||
|
||||
let b: R = pk.0.clone() * u.clone() + *m + e0;
|
||||
let d: TR<R, K> = &pk.1 * &u + e1;
|
||||
|
||||
Ok(Self(d, b))
|
||||
}
|
||||
// returns m' not downscaled
|
||||
pub fn decrypt(&self, sk: &SecretKey<R, K>) -> R {
|
||||
let (d, b): (TR<R, K>, R) = (self.0.clone(), self.1);
|
||||
let p: R = b - &d * &sk.0;
|
||||
p
|
||||
}
|
||||
}
|
||||
|
||||
// Methods for when Ring=Rq<Q,N>
|
||||
impl<const Q: u64, const N: usize, const K: usize> GLWE<Rq<Q, N>, K> {
|
||||
// scale up
|
||||
pub fn encode<const T: u64>(m: &Rq<T, N>) -> Rq<Q, N> {
|
||||
let m = m.remodule::<Q>();
|
||||
@@ -87,80 +135,54 @@ impl<const Q: u64, const N: usize, const K: usize> GLWE<Q, N, K> {
|
||||
m * delta
|
||||
}
|
||||
// scale down
|
||||
pub fn decode<const T: u64>(p: &Rq<Q, N>) -> Rq<T, N> {
|
||||
let r = p.mul_div_round(T, Q);
|
||||
r.remodule::<T>()
|
||||
}
|
||||
|
||||
// encrypts with the given SecretKey (instead of PublicKey)
|
||||
pub fn encrypt_s(mut rng: impl Rng, sk: &SecretKey<Q, N, K>, m: &Rq<Q, N>) -> Result<Self> {
|
||||
let Xi_key = Uniform::new(0_f64, 2_f64);
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
|
||||
let a: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Xi_key);
|
||||
let e = Rq::<Q, N>::rand(&mut rng, Xi_err);
|
||||
|
||||
let b: Rq<Q, N> = (&a * &sk.0) + *m + e;
|
||||
Ok(Self(a, b))
|
||||
}
|
||||
pub fn encrypt(mut rng: impl Rng, pk: &PublicKey<Q, N, K>, m: &Rq<Q, N>) -> Result<Self> {
|
||||
let Xi_key = Uniform::new(0_f64, 2_f64);
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
|
||||
let u: Rq<Q, N> = Rq::rand(&mut rng, Xi_key);
|
||||
|
||||
let e0 = Rq::<Q, N>::rand(&mut rng, Xi_err);
|
||||
let e1 = TR::<Rq<Q, N>, K>::rand(&mut rng, Xi_err);
|
||||
|
||||
let b: Rq<Q, N> = pk.0 * u + *m + e0;
|
||||
let d: TR<Rq<Q, N>, K> = &pk.1 * &u + e1;
|
||||
|
||||
Ok(Self(d, b))
|
||||
}
|
||||
pub fn decrypt(&self, sk: &SecretKey<Q, N, K>) -> Rq<Q, N> {
|
||||
let (d, b): (TR<Rq<Q, N>, K>, Rq<Q, N>) = (self.0.clone(), self.1);
|
||||
let r: Rq<Q, N> = b - &d * &sk.0;
|
||||
pub fn decode<const T: u64>(m: &Rq<Q, N>) -> Rq<T, N> {
|
||||
let r = m.mul_div_round(T, Q);
|
||||
let r: Rq<T, N> = r.remodule::<T>();
|
||||
r
|
||||
}
|
||||
|
||||
pub fn mod_switch<const P: u64>(&self) -> GLWE<P, N, K> {
|
||||
let a: TR<Rq<P, N>, K> = TR(self.0 .0.iter().map(|r| r.mod_switch::<P>()).collect());
|
||||
pub fn mod_switch<const P: u64>(&self) -> GLWE<Rq<P, N>, K> {
|
||||
let a: TR<Rq<P, N>, K> = TR(self
|
||||
.0
|
||||
.0
|
||||
.iter()
|
||||
.map(|r| r.mod_switch::<P>())
|
||||
.collect::<Vec<_>>());
|
||||
let b: Rq<P, N> = self.1.mod_switch::<P>();
|
||||
GLWE(a, b)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize, const K: usize> Add<GLWE<Q, N, K>> for GLWE<Q, N, K> {
|
||||
impl<R: Ring, const K: usize> Add<GLWE<R, K>> for GLWE<R, K> {
|
||||
type Output = Self;
|
||||
fn add(self, other: Self) -> Self {
|
||||
let a: TR<Rq<Q, N>, K> = self.0 + other.0;
|
||||
let b: Rq<Q, N> = self.1 + other.1;
|
||||
let a: TR<R, K> = self.0 + other.0;
|
||||
let b: R = self.1 + other.1;
|
||||
Self(a, b)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize, const K: usize> Add<Rq<Q, N>> for GLWE<Q, N, K> {
|
||||
impl<R: Ring, const K: usize> Add<R> for GLWE<R, K> {
|
||||
type Output = Self;
|
||||
fn add(self, plaintext: Rq<Q, N>) -> Self {
|
||||
let a: TR<Rq<Q, N>, K> = self.0;
|
||||
let b: Rq<Q, N> = self.1 + plaintext;
|
||||
fn add(self, plaintext: R) -> Self {
|
||||
let a: TR<R, K> = self.0;
|
||||
let b: R = self.1 + plaintext;
|
||||
Self(a, b)
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize, const K: usize> AddAssign for GLWE<Q, N, K> {
|
||||
impl<R: Ring, const K: usize> AddAssign for GLWE<R, K> {
|
||||
fn add_assign(&mut self, rhs: Self) {
|
||||
for i in 0..K {
|
||||
self.0 .0[i] = self.0 .0[i] + rhs.0 .0[i];
|
||||
self.0 .0[i] = self.0 .0[i].clone() + rhs.0 .0[i].clone();
|
||||
}
|
||||
self.1 = self.1 + rhs.1;
|
||||
self.1 = self.1.clone() + rhs.1.clone();
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize, const K: usize> Sum<GLWE<Q, N, K>> for GLWE<Q, N, K> {
|
||||
impl<R: Ring, const K: usize> Sum<GLWE<R, K>> for GLWE<R, K> {
|
||||
fn sum<I>(iter: I) -> Self
|
||||
where
|
||||
I: Iterator<Item = Self>,
|
||||
{
|
||||
let mut acc = GLWE::<Q, N, K>::zero();
|
||||
let mut acc = GLWE::<R, K>::zero();
|
||||
for e in iter {
|
||||
acc += e;
|
||||
}
|
||||
@@ -168,37 +190,60 @@ impl<const Q: u64, const N: usize, const K: usize> Sum<GLWE<Q, N, K>> for GLWE<Q
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize, const K: usize> Sub<GLWE<Q, N, K>> for GLWE<Q, N, K> {
|
||||
impl<R: Ring, const K: usize> Sub<GLWE<R, K>> for GLWE<R, K> {
|
||||
type Output = Self;
|
||||
fn sub(self, other: Self) -> Self {
|
||||
let a: TR<Rq<Q, N>, K> = self.0 - other.0;
|
||||
let b: Rq<Q, N> = self.1 - other.1;
|
||||
let a: TR<R, K> = self.0 - other.0;
|
||||
let b: R = self.1 - other.1;
|
||||
Self(a, b)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize, const K: usize> Mul<Rq<Q, N>> for GLWE<Q, N, K> {
|
||||
impl<R: Ring, const K: usize> Mul<R> for GLWE<R, K> {
|
||||
type Output = Self;
|
||||
fn mul(self, plaintext: Rq<Q, N>) -> Self {
|
||||
// first compute the NTT for plaintext, to avoid computing it at each
|
||||
// iteration, speeding up the multiplications
|
||||
let mut plaintext = plaintext.clone();
|
||||
plaintext.compute_evals();
|
||||
|
||||
let a: TR<Rq<Q, N>, K> = TR(self.0 .0.iter().map(|r_i| *r_i * plaintext).collect());
|
||||
let b: Rq<Q, N> = self.1 * plaintext;
|
||||
fn mul(self, plaintext: R) -> Self {
|
||||
let a: TR<R, K> = TR(self.0 .0.iter().map(|r_i| *r_i * plaintext).collect());
|
||||
let b: R = self.1 * plaintext;
|
||||
Self(a, b)
|
||||
}
|
||||
}
|
||||
// for when R = Rq<Q,N>
|
||||
// impl<const Q: u64, const N: usize, const K: usize> Mul<Rq<Q, N>> for GLWE<Rq<Q, N>, K> {
|
||||
// type Output = Self;
|
||||
// fn mul(self, plaintext: Rq<Q, N>) -> Self {
|
||||
// // first compute the NTT for plaintext, to avoid computing it at each
|
||||
// // iteration, speeding up the multiplications
|
||||
// let mut plaintext = plaintext.clone();
|
||||
// plaintext.compute_evals();
|
||||
//
|
||||
// let a: TR<Rq<Q, N>, K> = TR(self.0 .0.iter().map(|r_i| *r_i * plaintext).collect());
|
||||
// let b: Rq<Q, N> = self.1 * plaintext;
|
||||
// Self(a, b)
|
||||
// }
|
||||
// }
|
||||
|
||||
impl<const Q: u64, const N: usize, const K: usize> Mul<Zq<Q>> for GLWE<Q, N, K> {
|
||||
type Output = Self;
|
||||
fn mul(self, e: Zq<Q>) -> Self {
|
||||
let a: TR<Rq<Q, N>, K> = TR(self.0 .0.iter().map(|r_i| *r_i * e).collect());
|
||||
let b: Rq<Q, N> = self.1 * e;
|
||||
Self(a, b)
|
||||
}
|
||||
}
|
||||
// impl<R: Ring, const K: usize> Mul<R::C> for GLWE<R, K>
|
||||
// // where
|
||||
// // // R: std::ops::Mul<<R as arith::Ring>::C>,
|
||||
// // // Vec<R>: FromIterator<<R as Mul<<R as arith::Ring>::C>>::Output>,
|
||||
// // Vec<R>: FromIterator<<R as Mul<<R as arith::Ring>::C>>::Output>,
|
||||
// {
|
||||
// type Output = Self;
|
||||
// fn mul(self, e: R::C) -> Self {
|
||||
// let a: TR<R, K> = TR(self.0 .0.iter().map(|r_i| *r_i * e.clone()).collect());
|
||||
// let b: R = self.1 * e.clone();
|
||||
// Self(a, b)
|
||||
// }
|
||||
// }
|
||||
|
||||
// impl<const Q: u64, const N: usize, const K: usize> Mul<Zq<Q>> for GLWE<Q, N, K> {
|
||||
// type Output = Self;
|
||||
// fn mul(self, e: Zq<Q>) -> Self {
|
||||
// let a: TR<Rq<Q, N>, K> = TR(self.0 .0.iter().map(|r_i| *r_i * e).collect());
|
||||
// let b: Rq<Q, N> = self.1 * e;
|
||||
// Self(a, b)
|
||||
// }
|
||||
// }
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
@@ -213,7 +258,7 @@ mod tests {
|
||||
const N: usize = 128;
|
||||
const T: u64 = 32; // plaintext modulus
|
||||
const K: usize = 16;
|
||||
type S = GLWE<Q, N, K>;
|
||||
type S = GLWE<Rq<Q, N>, K>;
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
@@ -221,10 +266,11 @@ mod tests {
|
||||
let (sk, pk) = S::new_key(&mut rng)?;
|
||||
|
||||
let msg_dist = Uniform::new(0_u64, T);
|
||||
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||
let p = S::encode::<T>(&m); // plaintext
|
||||
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?; // msg
|
||||
// let m: Rq<Q, N> = m.remodule::<Q>();
|
||||
|
||||
let c = S::encrypt(&mut rng, &pk, &p)?;
|
||||
let p = S::encode::<T>(&m); // plaintext
|
||||
let c = S::encrypt(&mut rng, &pk, &p)?; // ciphertext
|
||||
let p_recovered = c.decrypt(&sk);
|
||||
let m_recovered = S::decode::<T>(&p_recovered);
|
||||
|
||||
@@ -241,13 +287,57 @@ mod tests {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
use arith::{Tn, T64};
|
||||
use std::array;
|
||||
pub fn t_encode<const P: u64>(m: &Rq<P, 4>) -> Tn<4> {
|
||||
let delta = u64::MAX / P; // floored
|
||||
let coeffs = m.coeffs();
|
||||
Tn(array::from_fn(|i| T64(coeffs[i].0 * delta)))
|
||||
}
|
||||
pub fn t_decode<const P: u64>(p: &Tn<4>) -> Rq<P, 4> {
|
||||
let p = p.mul_div_round(P, u64::MAX);
|
||||
Rq::<P, 4>::from_vec_u64(p.coeffs().iter().map(|c| c.0).collect())
|
||||
}
|
||||
#[test]
|
||||
fn test_encrypt_decrypt_torus() -> Result<()> {
|
||||
const N: usize = 128;
|
||||
const T: u64 = 32; // plaintext modulus
|
||||
const K: usize = 16;
|
||||
type S = GLWE<Tn<4>, K>;
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..200 {
|
||||
let (sk, pk) = S::new_key(&mut rng)?;
|
||||
|
||||
let msg_dist = Uniform::new(0_f64, T as f64);
|
||||
let m = Rq::<T, 4>::rand(&mut rng, msg_dist); // msg
|
||||
|
||||
let p = t_encode::<T>(&m); // plaintext
|
||||
let c = S::encrypt(&mut rng, &pk, &p)?; // ciphertext
|
||||
let p_recovered = c.decrypt(&sk);
|
||||
let m_recovered = t_decode::<T>(&p_recovered);
|
||||
|
||||
assert_eq!(m, m_recovered);
|
||||
|
||||
// same but using encrypt_s (with sk instead of pk))
|
||||
let c = S::encrypt_s(&mut rng, &sk, &p)?;
|
||||
let p_recovered = c.decrypt(&sk);
|
||||
let m_recovered = t_decode::<T>(&p_recovered);
|
||||
|
||||
assert_eq!(m, m_recovered);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_addition() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 128;
|
||||
const T: u64 = 20;
|
||||
const K: usize = 16;
|
||||
type S = GLWE<Q, N, K>;
|
||||
type S = GLWE<Rq<Q, N>, K>;
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
@@ -280,7 +370,7 @@ mod tests {
|
||||
const N: usize = 128;
|
||||
const T: u64 = 32;
|
||||
const K: usize = 16;
|
||||
type S = GLWE<Q, N, K>;
|
||||
type S = GLWE<Rq<Q, N>, K>;
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
@@ -300,7 +390,7 @@ mod tests {
|
||||
let p3_recovered = c3.decrypt(&sk);
|
||||
let m3_recovered = S::decode::<T>(&p3_recovered);
|
||||
|
||||
assert_eq!((m1 + m2).remodule::<T>(), m3_recovered);
|
||||
assert_eq!((m1 + m2).remodule::<T>(), m3_recovered.remodule::<T>());
|
||||
}
|
||||
|
||||
Ok(())
|
||||
@@ -312,7 +402,7 @@ mod tests {
|
||||
const N: usize = 16;
|
||||
const T: u64 = 4;
|
||||
const K: usize = 16;
|
||||
type S = GLWE<Q, N, K>;
|
||||
type S = GLWE<Rq<Q, N>, K>;
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
@@ -323,14 +413,14 @@ mod tests {
|
||||
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||
let p1: Rq<Q, N> = S::encode::<T>(&m1); // plaintext
|
||||
let p2: Rq<Q, N> = m2.remodule::<Q>();
|
||||
let p2 = m2.remodule::<Q>(); // notice we don't encode (scale by delta)
|
||||
|
||||
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
|
||||
|
||||
let c3 = c1 * p2;
|
||||
|
||||
let p3_recovered: Rq<Q, N> = c3.decrypt(&sk);
|
||||
let m3_recovered = S::decode::<T>(&p3_recovered);
|
||||
let m3_recovered: Rq<T, N> = S::decode::<T>(&p3_recovered);
|
||||
assert_eq!((m1.to_r() * m2.to_r()).to_rq::<T>(), m3_recovered);
|
||||
}
|
||||
|
||||
@@ -343,35 +433,27 @@ mod tests {
|
||||
const P: u64 = 2u64.pow(8) + 1;
|
||||
// note: wip, Q and P chosen so that P/Q is an integer
|
||||
const N: usize = 8;
|
||||
const T: u64 = 8; // plaintext modulus, must be a prime or power of a prime
|
||||
const T: u64 = 4; // plaintext modulus, must be a prime or power of a prime
|
||||
const K: usize = 16;
|
||||
type S = GLWE<Q, N, K>;
|
||||
type S = GLWE<Rq<Q, N>, K>;
|
||||
|
||||
let delta: u64 = Q / T; // floored
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
dbg!(P as f64 / Q as f64);
|
||||
dbg!(delta);
|
||||
dbg!(delta as f64 * P as f64 / Q as f64);
|
||||
dbg!(delta as f64 * (P as f64 / Q as f64));
|
||||
|
||||
for _ in 0..200 {
|
||||
let (sk, pk) = S::new_key(&mut rng)?;
|
||||
|
||||
let msg_dist = Uniform::new(0_u64, T);
|
||||
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||
let p = S::encode::<T>(&m); // plaintext
|
||||
|
||||
let p = S::encode::<T>(&m);
|
||||
let c = S::encrypt(&mut rng, &pk, &p)?;
|
||||
// let c = S::encrypt_s(&mut rng, &sk, &m, delta)?;
|
||||
|
||||
let c2 = c.mod_switch::<P>();
|
||||
let sk2: SecretKey<P, N, K> =
|
||||
let c2: GLWE<Rq<P, N>, K> = c.mod_switch::<P>();
|
||||
let sk2: SecretKey<Rq<P, N>, K> =
|
||||
SecretKey(TR(sk.0 .0.iter().map(|s_i| s_i.remodule::<P>()).collect()));
|
||||
// let delta2: u64 = ((P as f64 * delta as f64) / Q as f64).round() as u64;
|
||||
|
||||
let p_recovered = c2.decrypt(&sk2);
|
||||
let m_recovered = GLWE::<P, N, K>::decode::<T>(&p_recovered);
|
||||
let m_recovered = GLWE::<Rq<P, N>, K>::decode::<T>(&p_recovered);
|
||||
|
||||
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
||||
}
|
||||
@@ -385,7 +467,7 @@ mod tests {
|
||||
const N: usize = 128;
|
||||
const T: u64 = 2; // plaintext modulus
|
||||
const K: usize = 16;
|
||||
type S = GLWE<Q, N, K>;
|
||||
type S = GLWE<Rq<Q, N>, K>;
|
||||
|
||||
let beta: u32 = 2;
|
||||
let l: u32 = 16;
|
||||
@@ -399,8 +481,8 @@ mod tests {
|
||||
|
||||
let msg_dist = Uniform::new(0_u64, T);
|
||||
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||
let p: Rq<Q, N> = S::encode::<T>(&m); // plaintext
|
||||
|
||||
let p = S::encode::<T>(&m); // plaintext
|
||||
//
|
||||
let c = S::encrypt_s(&mut rng, &sk, &p)?;
|
||||
|
||||
let c2 = c.key_switch(beta, l, &ksk);
|
||||
@@ -408,14 +490,14 @@ mod tests {
|
||||
// decrypt with the 2nd secret key
|
||||
let p_recovered = c2.decrypt(&sk2);
|
||||
let m_recovered = S::decode::<T>(&p_recovered);
|
||||
assert_eq!(m, m_recovered);
|
||||
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
||||
|
||||
// do the same but now encrypting with pk
|
||||
// let c = S::encrypt(&mut rng, &pk, &p)?;
|
||||
// let c2 = c.key_switch(beta, l, &ksk);
|
||||
// let p_recovered = c2.decrypt(&sk2);
|
||||
// let m_recovered = S::decode::<T>(&p_recovered);
|
||||
// assert_eq!(m, m_recovered);
|
||||
let c = S::encrypt(&mut rng, &pk, &p)?;
|
||||
let c2 = c.key_switch(beta, l, &ksk);
|
||||
let p_recovered = c2.decrypt(&sk2);
|
||||
let m_recovered = S::decode::<T>(&p_recovered);
|
||||
assert_eq!(m, m_recovered);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -7,3 +7,6 @@
|
||||
|
||||
pub mod glev;
|
||||
pub mod glwe;
|
||||
|
||||
pub use glev::GLev;
|
||||
pub use glwe::GLWE;
|
||||
|
||||
@@ -10,3 +10,4 @@ rand_distr = { workspace = true }
|
||||
itertools = { workspace = true }
|
||||
|
||||
arith = { path="../arith" }
|
||||
gfhe = { path="../gfhe" }
|
||||
|
||||
@@ -5,5 +5,94 @@
|
||||
#![allow(clippy::upper_case_acronyms)]
|
||||
#![allow(dead_code)] // TMP
|
||||
|
||||
use anyhow::Result;
|
||||
use rand::Rng;
|
||||
use rand_distr::{Normal, Uniform};
|
||||
use std::array;
|
||||
|
||||
use arith::{Ring, Rq, Tn, T64};
|
||||
use gfhe::{glwe, GLWE};
|
||||
|
||||
pub mod tlev;
|
||||
pub mod tlwe;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SecretKey<const K: usize>(glwe::SecretKey<Tn<1>, K>);
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct PublicKey<const K: usize>(glwe::PublicKey<Tn<1>, K>);
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct TLWE<const K: usize>(pub GLWE<Tn<1>, K>);
|
||||
|
||||
impl<const K: usize> TLWE<K> {
|
||||
pub fn new_key(rng: impl Rng) -> Result<(SecretKey<K>, PublicKey<K>)> {
|
||||
let (sk, pk) = GLWE::new_key(rng)?;
|
||||
Ok((SecretKey(sk), PublicKey(pk)))
|
||||
}
|
||||
|
||||
pub fn encode<const P: u64>(m: &Rq<P, 1>) -> Tn<1> {
|
||||
let delta = u64::MAX / P; // floored
|
||||
let coeffs = m.coeffs();
|
||||
Tn(array::from_fn(|i| T64(coeffs[i].0 * delta)))
|
||||
}
|
||||
pub fn decode<const P: u64>(p: &Tn<1>) -> Rq<P, 1> {
|
||||
let p = p.mul_div_round(P, u64::MAX);
|
||||
Rq::<P, 1>::from_vec_u64(p.coeffs().iter().map(|c| c.0).collect())
|
||||
}
|
||||
pub fn encrypt_s(rng: impl Rng, sk: &SecretKey<K>, p: &Tn<1>) -> Result<Self> {
|
||||
let glwe = GLWE::encrypt_s(rng, &sk.0, p)?;
|
||||
Ok(Self(glwe))
|
||||
}
|
||||
|
||||
pub fn encrypt(rng: impl Rng, pk: &PublicKey<K>, p: &Tn<1>) -> Result<Self> {
|
||||
let glwe = GLWE::encrypt(rng, &pk.0, p)?;
|
||||
Ok(Self(glwe))
|
||||
}
|
||||
|
||||
pub fn decrypt(&self, sk: &SecretKey<K>) -> Tn<1> {
|
||||
self.0.decrypt(&sk.0)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use anyhow::Result;
|
||||
use rand::distributions::Uniform;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_encrypt_decrypt() -> Result<()> {
|
||||
const T: u64 = 128; // plaintext modulus
|
||||
const K: usize = 16;
|
||||
type S = TLWE<K>;
|
||||
|
||||
// let delta: u64 = Q / T; // floored
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..200 {
|
||||
let (sk, pk) = S::new_key(&mut rng)?;
|
||||
|
||||
let msg_dist = Uniform::new(0_f64, T as f64);
|
||||
let m = Rq::<T, 1>::rand(&mut rng, msg_dist); // msg
|
||||
|
||||
// let m: Rq<Q, N> = m.remodule::<Q>();
|
||||
|
||||
let p = S::encode::<T>(&m); // plaintext
|
||||
let c = S::encrypt(&mut rng, &pk, &p)?; // ciphertext
|
||||
let p_recovered = c.decrypt(&sk);
|
||||
let m_recovered = S::decode::<T>(&p_recovered);
|
||||
|
||||
assert_eq!(m, m_recovered);
|
||||
|
||||
// same but using encrypt_s (with sk instead of pk))
|
||||
let c = S::encrypt_s(&mut rng, &sk, &p)?;
|
||||
let p_recovered = c.decrypt(&sk);
|
||||
let m_recovered = S::decode::<T>(&p_recovered);
|
||||
|
||||
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user