mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
arith/torus: add left_rotate & mod_switch
This commit is contained in:
@@ -82,6 +82,31 @@ impl<const N: usize> Ring for Tn<N> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> Tn<N> {
|
||||
// multiply self by X^-h
|
||||
pub fn left_rotate(&self, h: usize) -> Self {
|
||||
dbg!(&h);
|
||||
dbg!(&N);
|
||||
let h = h % N;
|
||||
assert!(h < N);
|
||||
let c = self.0;
|
||||
// c[h], c[h+1], c[h+2], ..., c[n-1], -c[0], -c[1], ..., -c[h-1]
|
||||
// let r: Vec<T64> = vec![c[h..N], c[0..h].iter().map(|&c_i| -c_i).collect()].concat();
|
||||
dbg!(&h);
|
||||
let r: Vec<T64> = c[h..N]
|
||||
.iter()
|
||||
.copied()
|
||||
.chain(c[0..h].iter().map(|&x| -x))
|
||||
.collect();
|
||||
Self::from_vec(r)
|
||||
}
|
||||
|
||||
pub fn from_vec_u64(v: Vec<u64>) -> Self {
|
||||
let coeffs = v.iter().map(|c| T64(*c)).collect();
|
||||
Self::from_vec(coeffs)
|
||||
}
|
||||
}
|
||||
|
||||
// apply mod (X^N+1)
|
||||
pub fn modulus<const N: usize>(p: &mut Vec<T64>) {
|
||||
if p.len() < N {
|
||||
@@ -227,3 +252,40 @@ impl<const N: usize> Mul<&u64> for &Tn<N> {
|
||||
Tn::<N>(array::from_fn(|i| self.0[i] * *s))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_left_rotate() {
|
||||
const N: usize = 4;
|
||||
let f = Tn::<N>::from_vec(
|
||||
vec![2i64, 3, -4, -1]
|
||||
.iter()
|
||||
.map(|c| T64(*c as u64))
|
||||
.collect(),
|
||||
);
|
||||
|
||||
// expect f*x^-3 == -1 -2x -3x^2 +4x^3
|
||||
assert_eq!(
|
||||
f.left_rotate(3),
|
||||
Tn::<N>::from_vec(
|
||||
vec![-1i64, -2, -3, 4]
|
||||
.iter()
|
||||
.map(|c| T64(*c as u64))
|
||||
.collect(),
|
||||
)
|
||||
);
|
||||
// expect f*x^-1 == 3 -4x -1x^2 -2x^3
|
||||
assert_eq!(
|
||||
f.left_rotate(1),
|
||||
Tn::<N>::from_vec(
|
||||
vec![3i64, -4, -1, -2]
|
||||
.iter()
|
||||
.map(|c| T64(*c as u64))
|
||||
.collect(),
|
||||
)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -50,8 +50,15 @@ impl Ring for T64 {
|
||||
todo!()
|
||||
}
|
||||
|
||||
// modulus switch from Q to Q2: self * Q2/Q
|
||||
fn mod_switch<const Q2: u64>(&self) -> T64 {
|
||||
todo!()
|
||||
// for the moment we assume Q|Q2, since Q=2^64, check that Q2 is a power
|
||||
// of two:
|
||||
assert!(Q2.is_power_of_two());
|
||||
// since Q=2^64, dividing Q2/Q is equivalent to dividing 2^log2(Q2)/2^64
|
||||
// which would be like right-shifting 64-log2(Q2).
|
||||
let log2_q2 = 63 - Q2.leading_zeros();
|
||||
T64(self.0 >> (64 - log2_q2))
|
||||
}
|
||||
|
||||
fn mul_div_round(&self, num: u64, den: u64) -> Self {
|
||||
|
||||
@@ -17,8 +17,14 @@ use crate::Ring;
|
||||
/// since if using a fixed-size array it would overflow the stack.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct TR<R: Ring, const K: usize>(pub Vec<R>);
|
||||
// TODO rm pub from Vec<R>, so that TR can not be created from a Vec with
|
||||
// invalid length, since it has to be created using the `new` method.
|
||||
|
||||
impl<R: Ring, const K: usize> TR<R, K> {
|
||||
pub fn new(v: Vec<R>) -> Self {
|
||||
assert_eq!(v.len(), K);
|
||||
Self(v)
|
||||
}
|
||||
pub fn zero() -> Self {
|
||||
Self((0..K).into_iter().map(|_| R::zero()).collect())
|
||||
}
|
||||
@@ -37,6 +43,20 @@ impl<R: Ring, const K: usize> TR<R, K> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<const K: usize> TR<crate::torus::T64, K> {
|
||||
pub fn mod_switch<const Q2: u64>(&self) -> TR<crate::torus::T64, K> {
|
||||
TR(self.0.iter().map(|c_i| c_i.mod_switch::<Q2>()).collect())
|
||||
}
|
||||
// pub fn mod_switch(&self, Q2: u64) -> TR<crate::torus::T64, K> {
|
||||
// TR(self.0.iter().map(|c_i| c_i.mod_switch(Q2)).collect())
|
||||
// }
|
||||
}
|
||||
impl<const N: usize, const K: usize> TR<crate::ring_torus::Tn<N>, K> {
|
||||
pub fn left_rotate(&self, h: usize) -> Self {
|
||||
TR(self.0.iter().map(|c_i| c_i.left_rotate(h)).collect())
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: Ring, const K: usize> TR<R, K> {
|
||||
pub fn iter(&self) -> std::slice::Iter<R> {
|
||||
self.0.iter()
|
||||
|
||||
@@ -269,6 +269,9 @@ impl<const Q: u64> Neg for Zq<Q> {
|
||||
type Output = Self;
|
||||
|
||||
fn neg(self) -> Self::Output {
|
||||
if self.0 == 0 {
|
||||
return self;
|
||||
}
|
||||
Zq(Q - self.0)
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user