mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
implement CKKS encoder & decoder
This commit is contained in:
186
ckks/src/encoder.rs
Normal file
186
ckks/src/encoder.rs
Normal file
@@ -0,0 +1,186 @@
|
||||
use anyhow::Result;
|
||||
|
||||
use arith::{Matrix, Rq, C, R};
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SecretKey<const Q: u64, const N: usize>(Rq<Q, N>);
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct PublicKey<const Q: u64, const N: usize>(Rq<Q, N>, Rq<Q, N>);
|
||||
|
||||
pub struct Encoder<const Q: u64, const N: usize> {
|
||||
scale_factor: C<f64>, // Δ (delta)
|
||||
primitive: C<f64>,
|
||||
basis: Matrix<C<f64>>,
|
||||
basis_t: Matrix<C<f64>>, // transposed basis
|
||||
}
|
||||
|
||||
/// returns the mitive root of unity
|
||||
fn primitive_root_of_unity(m: usize) -> C<f64> {
|
||||
let pi = C::<f64>::from(std::f64::consts::PI);
|
||||
((C::<f64>::from(2f64) * pi * C::<f64>::i()) / C::<f64>::new(m as f64, 0f64)).exp()
|
||||
}
|
||||
|
||||
/// where 'w' is 'omega', the primitive root of unity
|
||||
fn vandermonde(n: usize, w: C<f64>) -> Matrix<C<f64>> {
|
||||
let mut v: Vec<Vec<C<f64>>> = vec![];
|
||||
for i in 0..n {
|
||||
let root = w.pow(2 * i as u32 + 1);
|
||||
let mut row: Vec<C<f64>> = vec![];
|
||||
for j in 0..n {
|
||||
row.push(root.pow(j as u32));
|
||||
}
|
||||
v.push(row);
|
||||
}
|
||||
Matrix::<C<f64>>(v)
|
||||
}
|
||||
impl<const Q: u64, const N: usize> Encoder<Q, N> {
|
||||
pub fn new(scale_factor: C<f64>) -> Self {
|
||||
let primitive: C<f64> = primitive_root_of_unity(2 * N);
|
||||
let basis = vandermonde(N, primitive);
|
||||
let basis_t = basis.transpose();
|
||||
|
||||
Self {
|
||||
scale_factor,
|
||||
primitive,
|
||||
basis,
|
||||
basis_t,
|
||||
}
|
||||
}
|
||||
|
||||
/// encode as described in the CKKS paper.
|
||||
/// from $\mathbb{C}^{N/2} \longrightarrow \mathbb{Z_q}[X]/(X^N +1) = R$
|
||||
// TODO use alg.1 from 2018-1043,
|
||||
// or as in 2018-1073: $f(x) = 1N (U^T.conj() m + U^T m.conj())$
|
||||
pub fn encode(&self, z: &[C<f64>]) -> Result<R<N>> {
|
||||
// $pi^{-1}: \mathbb{C}^{N/2} \longrightarrow \mathbb{H}$
|
||||
let expanded = self.pi_inv(z);
|
||||
|
||||
// scale the values
|
||||
let scaled: Vec<C<f64>> = expanded.iter().map(|e| *e * self.scale_factor).collect();
|
||||
|
||||
// but $\mathbb{H} \neq \sigma(R)$, since $\sigma(R) \subseteq \mathbb{H}$, so we need to
|
||||
// discretize $\pi^{-1}(z)$ into an element of $\sigma(R)$.
|
||||
|
||||
// discretize \pi^-1(z_projected) to \sigma(R)
|
||||
// project 'scaled' into \sigma(R):
|
||||
// get the orthogonal basis (note: that would be doing Gram-Schmidt, which is not this, but
|
||||
// we're fine since the basis=Vandermonde matrix which is orthogonal, so we project z to it):
|
||||
// $z = \sum z_i * b_i, with z_i = <z,b_i>/||b_i||^2$
|
||||
let z_projected = self
|
||||
.basis_t
|
||||
.0
|
||||
.iter()
|
||||
.map(|b_i| {
|
||||
// TODO: the b_j.conj() can be precomputed at initialization (of the basis)
|
||||
let num: C<f64> = scaled
|
||||
.iter()
|
||||
.zip(b_i.iter())
|
||||
.map(|(z_j, b_j)| *z_j * b_j.conj())
|
||||
.sum::<C<f64>>();
|
||||
let den: C<f64> = b_i.iter().map(|b_j| *b_j * b_j.conj()).sum::<C<f64>>();
|
||||
let mut z_i = num / den;
|
||||
z_i.im = 0.0; // get only the real component
|
||||
z_i
|
||||
})
|
||||
.collect::<Vec<C<f64>>>();
|
||||
|
||||
// V * z_projected (V: Vandermonde matrix)
|
||||
let discretized = self.basis.mul_vec(&z_projected)?;
|
||||
|
||||
// sigma_inv
|
||||
let r = self.sigma_inv(&discretized)?;
|
||||
|
||||
// TMP: naive round, maybe do gaussian
|
||||
let coeffs = r.iter().map(|e| e.re.round() as i64).collect::<Vec<i64>>();
|
||||
Ok(R::from_vec(coeffs))
|
||||
}
|
||||
|
||||
pub fn decode(&self, p: &R<N>) -> Result<Vec<C<f64>>> {
|
||||
let p: Vec<C<f64>> = p
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|&e| C::<f64>::new(e as f64, 0_f64)) // TODO review u64 to f64 conversion overflow
|
||||
.collect();
|
||||
let in_sigma = self.sigma(&p)?;
|
||||
|
||||
let deescalated: Vec<C<f64>> = in_sigma.iter().map(|e| *e / self.scale_factor).collect();
|
||||
Ok(self.pi(&deescalated))
|
||||
}
|
||||
|
||||
/// pi: \mathbb{H} \longrightarrow \mathbb{C}^{N/2}
|
||||
fn pi(&self, z: &[C<f64>]) -> Vec<C<f64>> {
|
||||
z[..N / 2].to_vec()
|
||||
}
|
||||
/// pi^{-1}: \mathbb{C}^{N/2} \longrightarrow \mathbb{H}
|
||||
fn pi_inv(&self, z: &[C<f64>]) -> Vec<C<f64>> {
|
||||
z.iter()
|
||||
.cloned()
|
||||
.chain(z.iter().rev().map(|z_i| z_i.conj()))
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn sigma(&self, p: &[C<f64>]) -> Result<Vec<C<f64>>> {
|
||||
// the roots of unity are already calculated in the 2nd row of the transpose of the
|
||||
// Vandermonde matrix used as the basis (ie. the 2nd column of the Vandermonde matrix).
|
||||
// let roots = &self.basis_t[1];
|
||||
// // Approach 1: evaluate p at the roots of unity
|
||||
// let mut z = vec![];
|
||||
// for root_i in roots.iter() {
|
||||
// z.push(eval(p, root_i));
|
||||
// }
|
||||
|
||||
// Approach 2: Vandermonde * p
|
||||
let z: Vec<C<f64>> = self.basis.mul_vec(&p.to_vec())?;
|
||||
|
||||
// TODO check using NTT-ish (2018-1043) for the encode/decode
|
||||
|
||||
Ok(z)
|
||||
}
|
||||
|
||||
fn sigma_inv(&self, z: &Vec<C<f64>>) -> Result<Vec<C<f64>>> {
|
||||
// $\alpha = A^{-1} * z$
|
||||
let a = self.basis.solve(z)?;
|
||||
Ok(a.to_vec())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use rand::Rng;
|
||||
|
||||
#[test]
|
||||
fn test_encode_decode() -> Result<()> {
|
||||
const Q: u64 = 1024;
|
||||
// const N: usize = 4; // ie. m=2*n=8
|
||||
const N: usize = 16;
|
||||
|
||||
let T = 16; // WIP
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..100 {
|
||||
let z: Vec<C<f64>> = std::iter::repeat_with(|| {
|
||||
C::<f64>::new(rng.gen_range(0..T) as f64, rng.gen_range(0..T) as f64)
|
||||
})
|
||||
.take(N / 2)
|
||||
.collect();
|
||||
|
||||
let delta = C::<f64>::new(64.0, 0.0); // delta = scaling factor
|
||||
let encoder = Encoder::<Q, N>::new(delta);
|
||||
|
||||
let m: R<N> = encoder.encode(&z)?; // polynomial (encoded vec) \in R
|
||||
|
||||
let z_decoded = encoder.decode(&m)?;
|
||||
|
||||
// round it to compare it to the initial value
|
||||
let rounded_z_decoded: Vec<C<f64>> = z_decoded
|
||||
.iter()
|
||||
.map(|c| C::<f64>::new(c.re.round(), c.im.round()))
|
||||
.collect();
|
||||
assert_eq!(rounded_z_decoded, z);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
10
ckks/src/lib.rs
Normal file
10
ckks/src/lib.rs
Normal file
@@ -0,0 +1,10 @@
|
||||
//! Implementation of BFV https://eprint.iacr.org/2012/144.pdf
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(non_upper_case_globals)]
|
||||
#![allow(non_camel_case_types)]
|
||||
#![allow(clippy::upper_case_acronyms)]
|
||||
#![allow(dead_code)] // TMP
|
||||
|
||||
pub mod encoder;
|
||||
|
||||
pub use encoder::Encoder;
|
||||
Reference in New Issue
Block a user