mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
polish, tensor & mul with relinearization works for some parameters choice
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
# fhe-study
|
||||
Implementations from scratch done while studying some FHE papers.
|
||||
|
||||
- arithmetic: contains $\mathbb{Z}_q$, $R_q=\mathbb{Z}_q[X]/(X^N+1)$ and $R=\mathbb{Z}[X]/(X^N+1)$ arithmetic implementations, together with the NTT implementation.
|
||||
- bfv: https://eprint.iacr.org/2012/144.pdf scheme implementation
|
||||
- `arith`: contains $\mathbb{Z}_q$, $R_q=\mathbb{Z}_q[X]/(X^N+1)$ and $R=\mathbb{Z}[X]/(X^N+1)$ arithmetic implementations, together with the NTT implementation.
|
||||
- `bfv`: https://eprint.iacr.org/2012/144.pdf scheme implementation
|
||||
|
||||
@@ -1,2 +1,2 @@
|
||||
# arithmetic
|
||||
# arith
|
||||
Contains $\mathbb{Z}_q$ and $\mathbb{Z}_q[X]/(X^N+1)$ arithmetic implementations, together with the NTT implementation.
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
//! Vandermonde matrix.
|
||||
use crate::zq::Zq;
|
||||
|
||||
use anyhow::{Result, anyhow};
|
||||
use anyhow::{anyhow, Result};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct NTT<const Q: u64, const N: usize> {
|
||||
@@ -35,6 +35,8 @@ impl<const Q: u64, const N: usize> NTT<Q, N> {
|
||||
intt,
|
||||
})
|
||||
}
|
||||
/// returns the Vandermonde matrix for the given primitive root of unity.
|
||||
/// Vandermonde matrix: https://en.wikipedia.org/wiki/Vandermonde_matrix
|
||||
pub fn vandermonde(primitive: Zq<Q>) -> Vec<Vec<Zq<Q>>> {
|
||||
let mut v: Vec<Vec<Zq<Q>>> = vec![];
|
||||
let n = (2 * N) as u64;
|
||||
@@ -52,6 +54,7 @@ impl<const Q: u64, const N: usize> NTT<Q, N> {
|
||||
v
|
||||
}
|
||||
// specifically for the Vandermonde matrix
|
||||
/// returns the inverse Vandermonde matrix
|
||||
pub fn invert_vandermonde(v: &Vec<Vec<Zq<Q>>>) -> Vec<Vec<Zq<Q>>> {
|
||||
let n = 2 * N;
|
||||
// let n = N;
|
||||
@@ -68,6 +71,8 @@ impl<const Q: u64, const N: usize> NTT<Q, N> {
|
||||
inv
|
||||
}
|
||||
|
||||
/// computes a primitive N-th root of unity using the method described by
|
||||
/// Thomas Pornin in https://crypto.stackexchange.com/a/63616
|
||||
pub fn get_primitive_root_of_unity(n: u64) -> Result<Zq<Q>> {
|
||||
// using the method described by Thomas Pornin in
|
||||
// https://crypto.stackexchange.com/a/63616
|
||||
@@ -101,8 +106,8 @@ mod tests {
|
||||
use super::*;
|
||||
use rand_distr::Uniform;
|
||||
|
||||
use crate::ring::Rq;
|
||||
use crate::ring::matrix_vec_product;
|
||||
use crate::ringq::matrix_vec_product;
|
||||
use crate::ringq::Rq;
|
||||
|
||||
#[test]
|
||||
fn roots_of_unity() -> Result<()> {
|
||||
|
||||
@@ -1,18 +1,13 @@
|
||||
//! Polynomial ring Z[X]/(X^N+1)
|
||||
//!
|
||||
|
||||
use anyhow::{Result, anyhow};
|
||||
use rand::{Rng, distributions::Distribution};
|
||||
use std::array;
|
||||
use std::fmt;
|
||||
use std::ops;
|
||||
|
||||
use crate::ntt::NTT;
|
||||
use crate::zq::Zq;
|
||||
|
||||
// PolynomialRing element, where the PolynomialRing is R = Z[X]/(X^n +1)
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct R<const N: usize>([i64; N]);
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct R<const N: usize>(pub [i64; N]);
|
||||
|
||||
impl<const Q: u64, const N: usize> From<crate::ringq::Rq<Q, N>> for R<N> {
|
||||
fn from(rq: crate::ringq::Rq<Q, N>) -> Self {
|
||||
@@ -157,10 +152,48 @@ pub fn naive_poly_mul<const N: usize>(poly1: &R<N>, poly2: &R<N>) -> R<N> {
|
||||
}
|
||||
|
||||
// apply mod (X^N + 1))
|
||||
R::<N>::from_vec(result.iter().map(|c| *c as i64).collect())
|
||||
// R::<N>::from_vec(result.iter().map(|c| *c as i64).collect())
|
||||
modulus_i128::<N>(&mut result);
|
||||
// dbg!(&result);
|
||||
// dbg!(R::<N>(array::from_fn(|i| result[i] as i64)).coeffs());
|
||||
|
||||
// sanity check: check that there are no coeffs > i64_max
|
||||
assert_eq!(
|
||||
result,
|
||||
R::<N>(array::from_fn(|i| result[i] as i64))
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|c| *c as i128)
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
R(array::from_fn(|i| result[i] as i64))
|
||||
}
|
||||
pub fn naive_mul_2<const N: usize>(poly1: &Vec<i128>, poly2: &Vec<i128>) -> Vec<i128> {
|
||||
let mut result: Vec<i128> = vec![0; (N * 2) - 1];
|
||||
for i in 0..N {
|
||||
for j in 0..N {
|
||||
result[i + j] = result[i + j] + poly1[i] * poly2[j];
|
||||
}
|
||||
}
|
||||
|
||||
// apply mod (X^N + 1))
|
||||
// R::<N>::from_vec(result.iter().map(|c| *c as i64).collect())
|
||||
modulus_i128::<N>(&mut result);
|
||||
result
|
||||
}
|
||||
|
||||
pub fn naive_mul<const N: usize>(poly1: &R<N>, poly2: &R<N>) -> Vec<i64> {
|
||||
let poly1: Vec<i128> = poly1.0.iter().map(|c| *c as i128).collect();
|
||||
let poly2: Vec<i128> = poly2.0.iter().map(|c| *c as i128).collect();
|
||||
let mut result = vec![0; (N * 2) - 1];
|
||||
for i in 0..N {
|
||||
for j in 0..N {
|
||||
result[i + j] = result[i + j] + poly1[i] * poly2[j];
|
||||
}
|
||||
}
|
||||
result.iter().map(|c| *c as i64).collect()
|
||||
}
|
||||
pub fn naive_mul_TMP<const N: usize>(poly1: &R<N>, poly2: &R<N>) -> Vec<i64> {
|
||||
let poly1: Vec<i128> = poly1.0.iter().map(|c| *c as i128).collect();
|
||||
let poly2: Vec<i128> = poly2.0.iter().map(|c| *c as i128).collect();
|
||||
let mut result: Vec<i128> = vec![0; (N * 2) - 1];
|
||||
@@ -170,6 +203,7 @@ pub fn naive_mul<const N: usize>(poly1: &R<N>, poly2: &R<N>) -> Vec<i64> {
|
||||
}
|
||||
}
|
||||
|
||||
// dbg!(&result);
|
||||
modulus_i128::<N>(&mut result);
|
||||
// for c_i in result.iter() {
|
||||
// println!("---");
|
||||
@@ -178,19 +212,25 @@ pub fn naive_mul<const N: usize>(poly1: &R<N>, poly2: &R<N>) -> Vec<i64> {
|
||||
// println!("{:?}", (*c_i as i64) as i128);
|
||||
// assert_eq!(*c_i, (*c_i as i64) as i128, "{:?}", c_i);
|
||||
// }
|
||||
|
||||
// let q: i128 = 65537;
|
||||
// let result: Vec<i64> = result
|
||||
// .iter()
|
||||
// // .map(|c_i| ((c_i % q + q) % q) as i64)
|
||||
// .map(|c_i| (c_i % q) as i64)
|
||||
// // .map(|c_i| *c_i as i64)
|
||||
// .collect();
|
||||
// result
|
||||
|
||||
result.iter().map(|c| *c as i64).collect()
|
||||
}
|
||||
|
||||
// wip
|
||||
pub fn mod_centered_q<const Q: u64, const N: usize>(p: Vec<i128>) -> R<N> {
|
||||
let q: i128 = Q as i128;
|
||||
let r = p
|
||||
.iter()
|
||||
.map(|v| {
|
||||
let mut res = v % q;
|
||||
if res > q / 2 {
|
||||
res = res - q;
|
||||
}
|
||||
res
|
||||
})
|
||||
.collect::<Vec<i128>>();
|
||||
R::<N>::from_vec(r.iter().map(|v| *v as i64).collect::<Vec<i64>>())
|
||||
}
|
||||
|
||||
// mul by u64
|
||||
impl<const N: usize> ops::Mul<u64> for R<N> {
|
||||
type Output = Self;
|
||||
@@ -214,3 +254,97 @@ impl<const N: usize> ops::Neg for R<N> {
|
||||
Self(array::from_fn(|i| -self.0[i]))
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> R<N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let mut str = "";
|
||||
let mut zero = true;
|
||||
for (i, coeff) in self.0.iter().enumerate().rev() {
|
||||
if *coeff == 0 {
|
||||
continue;
|
||||
}
|
||||
zero = false;
|
||||
f.write_str(str)?;
|
||||
if *coeff != 1 {
|
||||
f.write_str(coeff.to_string().as_str())?;
|
||||
if i > 0 {
|
||||
f.write_str("*")?;
|
||||
}
|
||||
}
|
||||
if *coeff == 1 && i == 0 {
|
||||
f.write_str(coeff.to_string().as_str())?;
|
||||
}
|
||||
if i == 1 {
|
||||
f.write_str("x")?;
|
||||
} else if i > 1 {
|
||||
f.write_str("x^")?;
|
||||
f.write_str(i.to_string().as_str())?;
|
||||
}
|
||||
str = " + ";
|
||||
}
|
||||
if zero {
|
||||
f.write_str("0")?;
|
||||
}
|
||||
|
||||
f.write_str(" mod Z")?;
|
||||
f.write_str("/(X^")?;
|
||||
f.write_str(N.to_string().as_str())?;
|
||||
f.write_str("+1)")?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
impl<const N: usize> fmt::Display for R<N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
self.fmt(f)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
impl<const N: usize> fmt::Debug for R<N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
self.fmt(f)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use anyhow::Result;
|
||||
|
||||
#[test]
|
||||
fn test_mul() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 2;
|
||||
let q: i64 = Q as i64;
|
||||
|
||||
// test vectors generated with SageMath
|
||||
let a: [i64; N] = [q - 1, q - 1];
|
||||
let b: [i64; N] = [q - 1, q - 1];
|
||||
let c: [i64; N] = [0, 8589934592];
|
||||
test_mul_opt::<Q, N>(a, b, c)?;
|
||||
|
||||
let a: [i64; N] = [1, q - 1];
|
||||
let b: [i64; N] = [1, q - 1];
|
||||
let c: [i64; N] = [-4294967295, 131072];
|
||||
test_mul_opt::<Q, N>(a, b, c)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
fn test_mul_opt<const Q: u64, const N: usize>(
|
||||
a: [i64; N],
|
||||
b: [i64; N],
|
||||
expected_c: [i64; N],
|
||||
) -> Result<()> {
|
||||
let mut a = R::new(a);
|
||||
let mut b = R::new(b);
|
||||
dbg!(&a);
|
||||
dbg!(&b);
|
||||
let expected_c = R::new(expected_c);
|
||||
|
||||
let mut c = naive_mul(&mut a, &mut b);
|
||||
modulus::<N>(&mut c);
|
||||
dbg!(R::<N>::from_vec(c.clone()));
|
||||
assert_eq!(c, expected_c.0.to_vec());
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
//! Polynomial ring Z_q[X]/(X^N+1)
|
||||
//!
|
||||
|
||||
use rand::{Rng, distributions::Distribution};
|
||||
use rand::{distributions::Distribution, Rng};
|
||||
use std::array;
|
||||
use std::fmt;
|
||||
use std::ops;
|
||||
|
||||
use crate::ntt::NTT;
|
||||
use crate::zq::{Zq, modulus_u64};
|
||||
use anyhow::{Result, anyhow};
|
||||
use crate::zq::{modulus_u64, Zq};
|
||||
use anyhow::{anyhow, Result};
|
||||
|
||||
/// PolynomialRing element, where the PolynomialRing is R = Z_q[X]/(X^n +1)
|
||||
/// The implementation assumes that q is prime.
|
||||
@@ -231,7 +231,10 @@ impl<const Q: u64, const N: usize> Rq<Q, N> {
|
||||
}
|
||||
|
||||
pub fn infinity_norm(&self) -> u64 {
|
||||
self.coeffs().iter().map(|x| x.0).fold(0, |a, b| a.max(b))
|
||||
self.coeffs()
|
||||
.iter()
|
||||
.map(|x| if x.0 > (Q / 2) { Q - x.0 } else { x.0 })
|
||||
.fold(0, |a, b| a.max(b))
|
||||
}
|
||||
}
|
||||
pub fn matrix_vec_product<const Q: u64>(m: &Vec<Vec<Zq<Q>>>, v: &Vec<Zq<Q>>) -> Result<Vec<Zq<Q>>> {
|
||||
@@ -369,6 +372,21 @@ impl<const Q: u64, const N: usize> ops::Mul<&u64> for &Rq<Q, N> {
|
||||
self.mul_by_u64(*s)
|
||||
}
|
||||
}
|
||||
// mul by f64
|
||||
impl<const Q: u64, const N: usize> ops::Mul<f64> for Rq<Q, N> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, s: f64) -> Self {
|
||||
self.mul_by_f64(s)
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Mul<&f64> for &Rq<Q, N> {
|
||||
type Output = Rq<Q, N>;
|
||||
|
||||
fn mul(self, s: &f64) -> Self::Output {
|
||||
self.mul_by_f64(*s)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> ops::Neg for Rq<Q, N> {
|
||||
type Output = Self;
|
||||
@@ -473,22 +491,6 @@ mod tests {
|
||||
);
|
||||
}
|
||||
|
||||
fn test_mul_opt<const Q: u64, const N: usize>(
|
||||
a: [u64; N],
|
||||
b: [u64; N],
|
||||
expected_c: [u64; N],
|
||||
) -> Result<()> {
|
||||
let a: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(a[i]));
|
||||
let mut a = Rq::new(a, None);
|
||||
let b: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(b[i]));
|
||||
let mut b = Rq::new(b, None);
|
||||
let expected_c: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(expected_c[i]));
|
||||
let expected_c = Rq::new(expected_c, None);
|
||||
|
||||
let c = mul_mut(&mut a, &mut b);
|
||||
assert_eq!(c, expected_c);
|
||||
Ok(())
|
||||
}
|
||||
#[test]
|
||||
fn test_mul() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
@@ -508,4 +510,20 @@ mod tests {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
fn test_mul_opt<const Q: u64, const N: usize>(
|
||||
a: [u64; N],
|
||||
b: [u64; N],
|
||||
expected_c: [u64; N],
|
||||
) -> Result<()> {
|
||||
let a: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(a[i]));
|
||||
let mut a = Rq::new(a, None);
|
||||
let b: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(b[i]));
|
||||
let mut b = Rq::new(b, None);
|
||||
let expected_c: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(expected_c[i]));
|
||||
let expected_c = Rq::new(expected_c, None);
|
||||
|
||||
let c = mul_mut(&mut a, &mut b);
|
||||
assert_eq!(c, expected_c);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -44,7 +44,11 @@ impl<const Q: u64> Zq<Q> {
|
||||
// Zq(e as u64)
|
||||
}
|
||||
pub fn from_bool(b: bool) -> Self {
|
||||
if b { Zq(1) } else { Zq(0) }
|
||||
if b {
|
||||
Zq(1)
|
||||
} else {
|
||||
Zq(0)
|
||||
}
|
||||
}
|
||||
pub fn zero() -> Self {
|
||||
Zq(0u64)
|
||||
|
||||
318
bfv/src/lib.rs
318
bfv/src/lib.rs
@@ -5,18 +5,16 @@
|
||||
#![allow(clippy::upper_case_acronyms)]
|
||||
#![allow(dead_code)] // TMP
|
||||
|
||||
use anyhow::{Result, anyhow};
|
||||
use anyhow::Result;
|
||||
use rand::Rng;
|
||||
use rand_distr::{Normal, Uniform};
|
||||
use std::ops;
|
||||
|
||||
use arith::{R, Rq};
|
||||
use arith::{Rq, R};
|
||||
|
||||
// error deviation for the Gaussian(Normal) distribution
|
||||
// sigma=3.2 from: https://eprint.iacr.org/2022/162.pdf page 5
|
||||
const ERR_SIGMA: f64 = 3.2;
|
||||
// const ERR_SIGMA: f64 = 0.0; // TODO WIP
|
||||
// const ERR_SIGMA: f64 = 1.0; // TODO WIP
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SecretKey<const Q: u64, const N: usize>(Rq<Q, N>);
|
||||
@@ -28,12 +26,6 @@ pub struct PublicKey<const Q: u64, const N: usize>(Rq<Q, N>, Rq<Q, N>);
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct RLK<const PQ: u64, const N: usize>(Rq<PQ, N>, Rq<PQ, N>);
|
||||
|
||||
// impl<const PQ: u64, const N: usize> RLK<Q, PQ, N> {
|
||||
// // const P: u64 = PQ / Q;
|
||||
//
|
||||
// // const PQ: u64 = P * Q;
|
||||
// }
|
||||
|
||||
// RLWE ciphertext
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct RLWE<const Q: u64, const N: usize>(Rq<Q, N>, Rq<Q, N>);
|
||||
@@ -47,6 +39,7 @@ impl<const Q: u64, const N: usize> RLWE<Q, N> {
|
||||
let y = self.1.remodule::<P>();
|
||||
RLWE::<P, N>(x, y)
|
||||
}
|
||||
|
||||
fn tensor<const PQ: u64, const T: u64>(a: &Self, b: &Self) -> (Rq<Q, N>, Rq<Q, N>, Rq<Q, N>) {
|
||||
// expand Q->PQ // TODO rm
|
||||
|
||||
@@ -57,8 +50,9 @@ impl<const Q: u64, const N: usize> RLWE<Q, N> {
|
||||
let b1: R<N> = b.1.to_r();
|
||||
|
||||
// tensor (\in R) (2021-204 p.9)
|
||||
// NOTE: here can use *, but at first versions want to make it explicit
|
||||
// that we're using the naive mul. TODO use *.
|
||||
use arith::ring::naive_mul;
|
||||
// (here can use *, but want to make it explicit that we're using the naive mul)
|
||||
let c0: Vec<i64> = naive_mul(&a0, &b0);
|
||||
let c1_l: Vec<i64> = naive_mul(&a0, &b1);
|
||||
let c1_r = naive_mul(&a1, &b0);
|
||||
@@ -72,32 +66,6 @@ impl<const Q: u64, const N: usize> RLWE<Q, N> {
|
||||
|
||||
(c0, c1, c2)
|
||||
}
|
||||
fn tensor_DBG<const PQ: u64, const T: u64>(
|
||||
a: &Self,
|
||||
b: &Self,
|
||||
) -> (Rq<Q, N>, Rq<Q, N>, Rq<Q, N>) {
|
||||
// iacr 2021-204:
|
||||
// expand Q->PQ
|
||||
// let a: RLWE<PQ, N> = a.remodule::<PQ>();
|
||||
// let b: RLWE<PQ, N> = b.remodule::<PQ>();
|
||||
|
||||
// tensor
|
||||
let c0: Rq<Q, N> = a.0 * b.0; // NTT mul
|
||||
let c1: Rq<Q, N> = a.0 * b.1 + a.1 * b.0; // NTT mul
|
||||
let c2: Rq<Q, N> = a.1 * b.1; // NTT mul
|
||||
|
||||
// scale down
|
||||
let c0: Rq<Q, N> = c0.mul_div_round(T, Q);
|
||||
let c1: Rq<Q, N> = c1.mul_div_round(T, Q);
|
||||
let c2: Rq<Q, N> = c2.mul_div_round(T, Q);
|
||||
|
||||
// expand^-1 PQ->Q
|
||||
// let c0: Rq<Q, N> = c0.remodule::<Q>();
|
||||
// let c1: Rq<Q, N> = c1.remodule::<Q>();
|
||||
// let c2: Rq<Q, N> = c2.remodule::<Q>();
|
||||
|
||||
(c0, c1, c2)
|
||||
}
|
||||
/// ciphertext multiplication
|
||||
fn mul<const PQ: u64, const T: u64>(rlk: &RLK<PQ, N>, a: &Self, b: &Self) -> Self {
|
||||
let (c0, c1, c2) = Self::tensor::<PQ, T>(a, b);
|
||||
@@ -122,12 +90,6 @@ impl<const Q: u64, const N: usize, const T: u64> ops::Add<&Rq<T, N>> for &RLWE<Q
|
||||
BFV::<Q, N, T>::add_const(self, rhs)
|
||||
}
|
||||
}
|
||||
// impl<const Q: u64, const N: usize, const T: u64> ops::Mul<&Rq<T, N>> for &RLWE<Q, N> {
|
||||
// type Output = RLWE<Q, N>;
|
||||
// fn mul(self, rhs: &Rq<T, N>) -> Self::Output {
|
||||
// BFV::<Q, N, T>::mul_const(&self, rhs)
|
||||
// }
|
||||
// }
|
||||
|
||||
pub struct BFV<const Q: u64, const N: usize, const T: u64> {}
|
||||
|
||||
@@ -138,26 +100,17 @@ impl<const Q: u64, const N: usize, const T: u64> BFV<Q, N, T> {
|
||||
pub fn new_key(mut rng: impl Rng) -> Result<(SecretKey<Q, N>, PublicKey<Q, N>)> {
|
||||
// WIP: review probabilities
|
||||
|
||||
let Xi_key = Uniform::new(-1_f64, 1_f64);
|
||||
// let Xi_key = Uniform::new(0_u64, 2_u64);
|
||||
// let Xi_key = Uniform::new(-1_f64, 1_f64);
|
||||
let Xi_key = Uniform::new(0_u64, 2_u64);
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
// let Xi_err = Normal::new(0_f64, 0.0)?;
|
||||
|
||||
// secret key
|
||||
let s = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
||||
// let s = Rq::<Q, N>::rand_u64(&mut rng, Xi_key)?;
|
||||
|
||||
// #[cfg(test)] // sanity check
|
||||
// assert!(
|
||||
// s.infinity_norm() <= 1,
|
||||
// "s.infinity_norm check failed {:?}",
|
||||
// s.coeffs()
|
||||
// );
|
||||
// let s = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
||||
let s = Rq::<Q, N>::rand_u64(&mut rng, Xi_key)?;
|
||||
|
||||
// pk = (-a * s + e, a)
|
||||
let a = Rq::<Q, N>::rand_u64(&mut rng, Uniform::new(0_u64, Q))?;
|
||||
let e = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
// println!("e{:?}", e.coeffs());
|
||||
let pk: PublicKey<Q, N> = PublicKey((&(-a) * &s) + e, a.clone());
|
||||
Ok((SecretKey(s), pk))
|
||||
}
|
||||
@@ -166,28 +119,15 @@ impl<const Q: u64, const N: usize, const T: u64> BFV<Q, N, T> {
|
||||
let Xi_key = Uniform::new(-1_f64, 1_f64);
|
||||
// let Xi_key = Uniform::new(0_u64, 2_u64);
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
// let Xi_err = Normal::new(0_f64, 0.0)?;
|
||||
|
||||
let u = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
||||
// let u = Rq::<Q, N>::rand_u64(&mut rng, Xi_key)?;
|
||||
let e_1 = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
let e_2 = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
// println!("e_1{:?}", e_1.coeffs());
|
||||
// println!("e_2{:?}", e_2.coeffs());
|
||||
|
||||
// #[cfg(test)] // sanity check
|
||||
// assert!(
|
||||
// u.infinity_norm() <= 1,
|
||||
// "u.infinity_norm check failed {:?}",
|
||||
// u.coeffs()
|
||||
// );
|
||||
|
||||
// migrate m's coeffs to the bigger modulus Q (from T)
|
||||
let m = m.remodule::<Q>();
|
||||
// let c0 = &pk.0 * &u + e_1 + m.mul_div_round(Q, T);
|
||||
let c0 = &pk.0 * &u + e_1 + m * Self::DELTA;
|
||||
// let D: u64 = (Q as f64 / T as f64).floor() as u64;
|
||||
// let c0 = &pk.0 * &u + e_1 + m * D; // TODO use DELTA?
|
||||
let c1 = &pk.1 * &u + e_2;
|
||||
Ok(RLWE::<Q, N>(c0, c1))
|
||||
}
|
||||
@@ -195,18 +135,11 @@ impl<const Q: u64, const N: usize, const T: u64> BFV<Q, N, T> {
|
||||
pub fn decrypt(sk: &SecretKey<Q, N>, c: &RLWE<Q, N>) -> Rq<T, N> {
|
||||
let cs = c.0 + c.1 * sk.0; // done in mod q
|
||||
|
||||
// let c1s = tmp_naive_mul(c.1, sk.0);
|
||||
// // let c1s = arith::ring::naive_mul(&c.1.to_r(), &sk.0.to_r()); // TODO rm
|
||||
// // let c1s = Rq::<Q, N>::from_vec_i64(c1s);
|
||||
// same but with naive_mul:
|
||||
// let c1s = arith::ring::naive_mul(&c.1.to_r(), &sk.0.to_r());
|
||||
// let c1s = Rq::<Q, N>::from_vec_i64(c1s);
|
||||
// let cs = c.0 + c1s;
|
||||
|
||||
// let r: Vec<u64> = cs
|
||||
// .coeffs()
|
||||
// .iter()
|
||||
// .map(|e| ((T as f64 * e.0 as f64) / Q as f64).round() as u64)
|
||||
// .collect();
|
||||
// Rq::<T, N>::from_vec_u64(r)
|
||||
|
||||
let r: Rq<Q, N> = cs.mul_div_round(T, Q);
|
||||
r.remodule::<T>()
|
||||
}
|
||||
@@ -226,29 +159,21 @@ impl<const Q: u64, const N: usize, const T: u64> BFV<Q, N, T> {
|
||||
}
|
||||
|
||||
fn rlk_key<const PQ: u64>(mut rng: impl Rng, s: &SecretKey<Q, N>) -> Result<RLK<PQ, N>> {
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?; // TODO review Xi' instead of Xi
|
||||
|
||||
// TODO review using Xi' instead of Xi
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
// let Xi_err = Normal::new(0_f64, 0.0)?;
|
||||
let s = s.0.remodule::<PQ>();
|
||||
let a = Rq::<PQ, N>::rand_u64(&mut rng, Uniform::new(0_u64, PQ))?;
|
||||
let e = Rq::<PQ, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
|
||||
// let rlk_1: Rq<PQ, N> = (&(-a) * &s) - e + (s * s) * P;
|
||||
let P = PQ / Q;
|
||||
|
||||
let rlk: RLK<PQ, N> = RLK::<PQ, N>((&(-a) * &s) - e + (s * s) * P, a.clone());
|
||||
// let rlk: RLK<PQ, N> = RLK::<PQ, N>(
|
||||
// -(tmp_naive_mul(a, s) + e) + tmp_naive_mul(s, s) * P,
|
||||
// a.clone(),
|
||||
// );
|
||||
// let rlk: RLK<PQ, N> = RLK::<PQ, N>(-(&a * &s + e) + (s * s) * P, a.clone());
|
||||
let rlk: RLK<PQ, N> = RLK::<PQ, N>(
|
||||
-(tmp_naive_mul(a, s) + e) + tmp_naive_mul(s, s) * P,
|
||||
a.clone(),
|
||||
);
|
||||
|
||||
// let pq = P * Q;
|
||||
// let a = Rq::<Q, N>::rand_u64(&mut rng, Uniform::new(0_u64, pq))?;
|
||||
// let e = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
//
|
||||
// let rlk_0: Rq<Q, N> = (&(-a) * &s) - e + (s * s) * P;
|
||||
// let rlk_0 = rlk_0.remodule::<>();
|
||||
// let rlk: RLK<Q, N> = RLK(rlk_0, a);
|
||||
Ok(rlk)
|
||||
}
|
||||
|
||||
@@ -260,9 +185,6 @@ impl<const Q: u64, const N: usize, const T: u64> BFV<Q, N, T> {
|
||||
) -> RLWE<Q, N> {
|
||||
let P = PQ / Q;
|
||||
|
||||
// let c2 = c2.remodule::<PQ>();
|
||||
// let c2 = c2.to_r();
|
||||
|
||||
let c2rlk0: Vec<f64> = (c2.to_r() * rlk.0.to_r())
|
||||
.coeffs()
|
||||
.iter()
|
||||
@@ -289,20 +211,17 @@ impl<const Q: u64, const N: usize, const T: u64> BFV<Q, N, T> {
|
||||
) -> RLWE<Q, N> {
|
||||
let P = PQ / Q;
|
||||
|
||||
// let c2 = c2.remodule::<PQ>();
|
||||
// let c2 = c2.to_r();
|
||||
// let c2rlk0: Rq<PQ, N> = c2.remodule::<PQ>() * rlk.0.remodule::<PQ>();
|
||||
// let c2rlk1: Rq<PQ, N> = c2.remodule::<PQ>() * rlk.1.remodule::<PQ>();
|
||||
// let r0: Rq<Q, N> = c2rlk0.mul_div_round(1, P).remodule::<Q>();
|
||||
// let r1: Rq<Q, N> = c2rlk1.mul_div_round(1, P).remodule::<Q>();
|
||||
|
||||
// let c2rlk0: Vec<f64> = (c2.remodule::<PQ>() * rlk.0)
|
||||
use arith::ring::naive_mul;
|
||||
let c2rlk0: Vec<i64> = naive_mul(&c2.to_r(), &rlk.0.to_r());
|
||||
let c2rlk1: Vec<i64> = naive_mul(&c2.to_r(), &rlk.1.to_r());
|
||||
|
||||
let r0: Rq<Q, N> = arith::ring::mul_div_round::<Q, N>(c2rlk0, 1, P);
|
||||
let r1: Rq<Q, N> = arith::ring::mul_div_round::<Q, N>(c2rlk1, 1, P);
|
||||
|
||||
// let r0 = Rq::<Q, N>::from_vec_f64(c2rlk0);
|
||||
// let r1 = Rq::<Q, N>::from_vec_f64(c2rlk1);
|
||||
|
||||
let res = RLWE::<Q, N>(c0 + &r0, c1 + &r1);
|
||||
res
|
||||
}
|
||||
@@ -318,13 +237,13 @@ mod tests {
|
||||
#[test]
|
||||
fn test_encrypt_decrypt() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 32;
|
||||
const T: u64 = 4; // plaintext modulus
|
||||
const N: usize = 512;
|
||||
const T: u64 = 32; // plaintext modulus
|
||||
type S = BFV<Q, N, T>;
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..1000 {
|
||||
for _ in 0..100 {
|
||||
let (sk, pk) = S::new_key(&mut rng)?;
|
||||
|
||||
let msg_dist = Uniform::new(0_u64, T);
|
||||
@@ -342,13 +261,13 @@ mod tests {
|
||||
#[test]
|
||||
fn test_addition() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 32;
|
||||
const T: u64 = 4; // plaintext modulus
|
||||
const N: usize = 128;
|
||||
const T: u64 = 32; // plaintext modulus
|
||||
type S = BFV<Q, N, T>;
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..1_000 {
|
||||
for _ in 0..100 {
|
||||
let (sk, pk) = S::new_key(&mut rng)?;
|
||||
|
||||
let msg_dist = Uniform::new(0_u64, T);
|
||||
@@ -371,8 +290,8 @@ mod tests {
|
||||
#[test]
|
||||
fn test_constant_add_mul() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 32;
|
||||
const T: u64 = 8; // plaintext modulus
|
||||
const N: usize = 16;
|
||||
const T: u64 = 16; // plaintext modulus
|
||||
type S = BFV<Q, N, T>;
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
@@ -405,10 +324,133 @@ mod tests {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// TMP WIP
|
||||
#[test]
|
||||
#[ignore]
|
||||
fn test_params() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1; // q prime, and 2^q + 1 shape
|
||||
const N: usize = 32;
|
||||
const T: u64 = 8; // plaintext modulus
|
||||
|
||||
const P: u64 = Q * Q;
|
||||
const PQ: u64 = P * Q;
|
||||
const DELTA: u64 = Q / T; // floor
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
let Xi_key = Uniform::new(0_f64, 1_f64);
|
||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||
|
||||
let s = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
||||
let e = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
let u = Rq::<Q, N>::rand_f64(&mut rng, Xi_key)?;
|
||||
let e_0 = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
let e_1 = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
|
||||
let m = Rq::<Q, N>::rand_u64(&mut rng, Uniform::new(0_u64, T))?;
|
||||
|
||||
// v_fresh
|
||||
let v: Rq<Q, N> = u * e + e_1 * s + e_0;
|
||||
|
||||
let q: f64 = Q as f64;
|
||||
let t: f64 = T as f64;
|
||||
let n: f64 = N as f64;
|
||||
let delta: f64 = DELTA as f64;
|
||||
|
||||
// r_t(q)/t should be equal to q/t-Δ
|
||||
assert_eq!(
|
||||
// r_t(q)/t, where r_t(q)=q mod t
|
||||
(q % t) / t,
|
||||
// Δt/Q = q - r_t(Q)/Q, so r_t(Q)=q - Δt
|
||||
(q / t) - delta
|
||||
);
|
||||
let rt: f64 = (q % t) / t;
|
||||
dbg!(&rt);
|
||||
|
||||
dbg!(v.infinity_norm());
|
||||
let bound: f64 = (q / (2_f64 * t)) - (rt / 2_f64);
|
||||
dbg!(bound);
|
||||
assert!((v.infinity_norm() as f64) < bound);
|
||||
let max_v_infnorm = bound - 1.0;
|
||||
|
||||
// addition noise
|
||||
let v_add: Rq<Q, N> = v + v + u * rt;
|
||||
let v_add: Rq<Q, N> = v_add + v_add + u * rt;
|
||||
assert!((v_add.infinity_norm() as f64) < bound);
|
||||
|
||||
// multiplication noise
|
||||
let (_, pk) = BFV::<Q, N, T>::new_key(&mut rng)?;
|
||||
let c = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m.remodule::<T>())?;
|
||||
let b_key: f64 = 1_f64;
|
||||
// ef: expansion factor
|
||||
let ef: f64 = 2.0 * n.sqrt();
|
||||
let bound: f64 = ((ef * t) / 2.0)
|
||||
* ((2.0 * max_v_infnorm * max_v_infnorm) / q
|
||||
+ (4.0 + ef * b_key) * (max_v_infnorm + max_v_infnorm)
|
||||
+ rt * (ef * b_key + 5.0))
|
||||
+ (1.0 + ef * b_key + ef * ef * b_key * b_key) / 2.0;
|
||||
dbg!(&bound);
|
||||
|
||||
let k: Vec<f64> = (c.0 + c.1 * s - m * delta - v)
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|e_i| e_i.0 as f64 / q)
|
||||
.collect();
|
||||
let k = Rq::<Q, N>::from_vec_f64(k);
|
||||
let v_tensor_0 = (v * v)
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|e_i| (e_i.0 as f64 * t) / q)
|
||||
.collect::<Vec<f64>>();
|
||||
let v_tensor_0 = Rq::<Q, N>::from_vec_f64(v_tensor_0);
|
||||
let v_tensor_1 = ((m * v) + (m * v))
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|e_i| (e_i.0 as f64 * t * delta) / q)
|
||||
.collect::<Vec<f64>>();
|
||||
let v_tensor_1 = Rq::<Q, N>::from_vec_f64(v_tensor_1);
|
||||
let v_tensor_2: Rq<Q, N> = (v * k + v * k) * t;
|
||||
let rm: f64 = (ef * t) / 2.0;
|
||||
let rm: Rq<Q, N> = Rq::<Q, N>::from_vec_f64(vec![rm; N]);
|
||||
let v_tensor_3: Rq<Q, N> = (m * k
|
||||
+ m * k
|
||||
+ rm
|
||||
+ Rq::from_vec_f64(
|
||||
((m * m) * DELTA)
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|e_i| e_i.0 as f64 / q)
|
||||
.collect::<Vec<f64>>(),
|
||||
))
|
||||
* rt;
|
||||
let v_tensor = v_tensor_0 + v_tensor_1 + v_tensor_2 - v_tensor_3;
|
||||
|
||||
let v_r = (1.0 + ef * b_key + ef * ef * b_key * b_key) / 2.0;
|
||||
let v_mult_norm = v_tensor.infinity_norm() as f64 + v_r;
|
||||
dbg!(&v_mult_norm);
|
||||
dbg!(&bound);
|
||||
assert!(v_mult_norm < bound);
|
||||
|
||||
// let m1 = Rq::<T, N>::zero();
|
||||
// let m2 = Rq::<T, N>::zero();
|
||||
// let (_, pk) = BFV::<Q, N, T>::new_key(&mut rng)?;
|
||||
// let c1 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m1)?;
|
||||
// let c2 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m2)?;
|
||||
// let (c_a, c_b, c_c) = RLWE::<Q, N>::tensor::<PQ, T>(&c1, &c2);
|
||||
// dbg!(&c_a.infinity_norm());
|
||||
// dbg!(&c_b.infinity_norm());
|
||||
// dbg!(&c_c.infinity_norm());
|
||||
// assert!((c_a.infinity_norm() as f64) < bound);
|
||||
// assert!((c_b.infinity_norm() as f64) < bound);
|
||||
// assert!((c_c.infinity_norm() as f64) < bound);
|
||||
// WIP
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_tensor() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1; // q prime, and 2^q + 1 shape
|
||||
const N: usize = 32;
|
||||
const N: usize = 16;
|
||||
const T: u64 = 2; // plaintext modulus
|
||||
|
||||
// const P: u64 = Q;
|
||||
@@ -418,7 +460,7 @@ mod tests {
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
let msg_dist = Uniform::new(0_u64, T);
|
||||
for _ in 0..10_000 {
|
||||
for _ in 0..1_000 {
|
||||
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||
|
||||
@@ -438,6 +480,7 @@ mod tests {
|
||||
let c2 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m2)?;
|
||||
|
||||
let (c_a, c_b, c_c) = RLWE::<Q, N>::tensor::<PQ, T>(&c1, &c2);
|
||||
// let (c_a, c_b, c_c) = RLWE::<Q, N>::tensor_new::<PQ, T>(&c1, &c2);
|
||||
|
||||
// decrypt non-relinearized mul result
|
||||
let m3: Rq<Q, N> = c_a + c_b * sk.0 + c_c * sk.0 * sk.0;
|
||||
@@ -458,47 +501,6 @@ mod tests {
|
||||
m1.coeffs(),
|
||||
m2.coeffs()
|
||||
);
|
||||
if m3.coeffs().to_vec() != naive.coeffs().to_vec() {
|
||||
return Err(anyhow!("not eq"));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_tensor_opt_DBG<const Q: u64, const N: usize, const T: u64, const PQ: u64>(
|
||||
mut rng: impl Rng,
|
||||
m1: Rq<T, N>,
|
||||
m2: Rq<T, N>,
|
||||
) -> Result<()> {
|
||||
let (sk, pk) = BFV::<Q, N, T>::new_key(&mut rng)?;
|
||||
|
||||
let c1 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m1)?;
|
||||
let c2 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m2)?;
|
||||
|
||||
let (c_a, c_b, c_c) = RLWE::<Q, N>::tensor::<PQ, T>(&c1, &c2);
|
||||
|
||||
// decrypt non-relinearized mul result
|
||||
let m3: Rq<Q, N> = c_a + c_b * sk.0 + c_c * sk.0 * sk.0;
|
||||
dbg!(m3);
|
||||
let m3: Rq<Q, N> = m3.mul_div_round(T, Q);
|
||||
dbg!(m3);
|
||||
let m3 = m3.remodule::<T>();
|
||||
dbg!(m3);
|
||||
|
||||
// let naive = (m1.to_r() * m2.to_r()).to_rq::<T>();
|
||||
// let naive = m1.remodule::<Q>() * m2.remodule::<Q>();
|
||||
let naive = (m1.remodule::<Q>() * m2.remodule::<Q>()).remodule::<T>();
|
||||
dbg!(naive);
|
||||
assert_eq!(
|
||||
m3.coeffs().to_vec(),
|
||||
naive.coeffs().to_vec(),
|
||||
"\n\nfor testing:\nlet m1 = Rq::<T, N>::from_vec_u64(vec!{:?});\nlet m2 = Rq::<T, N>::from_vec_u64(vec!{:?});\n",
|
||||
m1.coeffs(),
|
||||
m2.coeffs()
|
||||
);
|
||||
// if m3.coeffs().to_vec() != naive.coeffs().to_vec() {
|
||||
// return Err(anyhow!("not eq"));
|
||||
// }
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -506,8 +508,8 @@ mod tests {
|
||||
#[test]
|
||||
fn test_mul_relin() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 32;
|
||||
const T: u64 = 4; // plaintext modulus
|
||||
const N: usize = 4;
|
||||
const T: u64 = 2; // plaintext modulus
|
||||
type S = BFV<Q, N, T>;
|
||||
|
||||
const P: u64 = Q * Q;
|
||||
@@ -549,7 +551,7 @@ mod tests {
|
||||
"\n\nfor testing:\nlet m1 = Rq::<T, N>::from_vec_u64(vec!{:?});\nlet m2 = Rq::<T, N>::from_vec_u64(vec!{:?});\n",
|
||||
m1.coeffs(),
|
||||
m2.coeffs()
|
||||
);
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user