mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
add wip version of tensor & relinearization
This commit is contained in:
@@ -4,11 +4,13 @@
|
||||
#![allow(clippy::upper_case_acronyms)]
|
||||
#![allow(dead_code)] // TMP
|
||||
|
||||
mod naive; // TODO rm
|
||||
mod naive_ntt; // TODO rm
|
||||
pub mod ntt;
|
||||
pub mod ring;
|
||||
pub mod ringq;
|
||||
pub mod zq;
|
||||
|
||||
pub use ntt::NTT;
|
||||
pub use ring::PR;
|
||||
pub use ring::R;
|
||||
pub use ringq::Rq;
|
||||
pub use zq::Zq;
|
||||
|
||||
@@ -102,7 +102,7 @@ mod tests {
|
||||
use rand_distr::Uniform;
|
||||
|
||||
use crate::ring::matrix_vec_product;
|
||||
use crate::ring::PR;
|
||||
use crate::ring::Rq;
|
||||
|
||||
#[test]
|
||||
fn roots_of_unity() -> Result<()> {
|
||||
@@ -136,7 +136,7 @@ mod tests {
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
let uniform_distr = Uniform::new(0_f64, Q as f64);
|
||||
let a = PR::<Q, N>::rand_f64(&mut rng, uniform_distr)?;
|
||||
let a = Rq::<Q, N>::rand_f64(&mut rng, uniform_distr)?;
|
||||
// let a = PR::<Q, N>::new_from_u64(vec![36, 21, 9, 19]);
|
||||
|
||||
// let a_padded_coeffs: [Zq<Q>; 2 * N] =
|
||||
@@ -148,7 +148,7 @@ mod tests {
|
||||
let a_intt: Vec<Zq<Q>> = matrix_vec_product(&v_inv, &a_ntt)?;
|
||||
assert_eq!(a_intt, a_padded);
|
||||
let a_intt_arr: [Zq<Q>; N] = std::array::from_fn(|i| a_intt[i]);
|
||||
assert_eq!(PR::new(a_intt_arr, None), a);
|
||||
assert_eq!(Rq::new(a_intt_arr, None), a);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -162,7 +162,7 @@ mod tests {
|
||||
|
||||
let a: Vec<Zq<Q>> = vec![256, 256, 256, 256, 0, 0, 0, 0]
|
||||
.iter()
|
||||
.map(|&e| Zq::new(e))
|
||||
.map(|&e| Zq::from_u64(e))
|
||||
.collect();
|
||||
let a_ntt = matrix_vec_product(&ntt.ntt, &a)?;
|
||||
let a_intt = matrix_vec_product(&ntt.intt, &a_ntt)?;
|
||||
@@ -181,7 +181,7 @@ mod tests {
|
||||
let ntt = NTT::<Q, N>::new()?;
|
||||
|
||||
let rng = rand::thread_rng();
|
||||
let a = PR::<Q, { 2 * N }>::rand_f64(rng, Uniform::new(0_f64, (Q - 1) as f64))?;
|
||||
let a = Rq::<Q, { 2 * N }>::rand_f64(rng, Uniform::new(0_f64, (Q - 1) as f64))?;
|
||||
let a = a.coeffs;
|
||||
dbg!(&a);
|
||||
let a_ntt = matrix_vec_product(&ntt.ntt, &a.to_vec())?;
|
||||
@@ -115,19 +115,20 @@ const fn roots_of_unity_inv<const Q: u64, const N: usize>(v: [Zq<Q>; N]) -> [Zq<
|
||||
|
||||
/// returns x^k mod Q
|
||||
const fn const_exp_mod<const Q: u64>(x: u64, k: u64) -> u64 {
|
||||
let mut r = 1u64;
|
||||
let mut x = x;
|
||||
let mut k = k;
|
||||
x = x % Q;
|
||||
// work on u128 to avoid overflow
|
||||
let mut r = 1u128;
|
||||
let mut x = x as u128;
|
||||
let mut k = k as u128;
|
||||
x = x % Q as u128;
|
||||
// exponentiation by square strategy
|
||||
while k > 0 {
|
||||
if k % 2 == 1 {
|
||||
r = (r * x) % Q;
|
||||
r = (r * x) % Q as u128;
|
||||
}
|
||||
x = (x * x) % Q;
|
||||
x = (x * x) % Q as u128;
|
||||
k /= 2;
|
||||
}
|
||||
r
|
||||
r as u64
|
||||
}
|
||||
|
||||
/// returns x^-1 mod Q
|
||||
@@ -149,7 +150,7 @@ mod tests {
|
||||
const N: usize = 4;
|
||||
|
||||
let a: [u64; N] = [1u64, 2, 3, 4];
|
||||
let a: [Zq<Q>; N] = array::from_fn(|i| Zq::new(a[i]));
|
||||
let a: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(a[i]));
|
||||
|
||||
let a_ntt = NTT::<Q, N>::ntt(a);
|
||||
|
||||
|
||||
@@ -1,3 +1,7 @@
|
||||
//! Polynomial ring Z[X]/(X^N+1)
|
||||
//!
|
||||
|
||||
use anyhow::{anyhow, Result};
|
||||
use rand::{distributions::Distribution, Rng};
|
||||
use std::array;
|
||||
use std::fmt;
|
||||
@@ -5,432 +9,176 @@ use std::ops;
|
||||
|
||||
use crate::ntt::NTT;
|
||||
use crate::zq::Zq;
|
||||
use anyhow::{anyhow, Result};
|
||||
|
||||
// PolynomialRing element, where the PolynomialRing is R = Z_q[X]/(X^n +1)
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct PR<const Q: u64, const N: usize> {
|
||||
pub(crate) coeffs: [Zq<Q>; N],
|
||||
// PolynomialRing element, where the PolynomialRing is R = Z[X]/(X^n +1)
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct R<const N: usize>([i64; N]);
|
||||
|
||||
// evals are set when doig a PRxPR multiplication, so it can be reused in future
|
||||
// multiplications avoiding recomputing it
|
||||
pub(crate) evals: Option<[Zq<Q>; N]>,
|
||||
impl<const Q: u64, const N: usize> From<crate::ringq::Rq<Q, N>> for R<N> {
|
||||
fn from(rq: crate::ringq::Rq<Q, N>) -> Self {
|
||||
Self::from_vec_u64(rq.coeffs().to_vec().iter().map(|e| e.0).collect())
|
||||
}
|
||||
}
|
||||
|
||||
// TODO define a trait "PolynomialRingTrait" or similar, so that when other structs use it can just
|
||||
// use the trait and not need to add '<Q, N>' to their params
|
||||
impl<const N: usize> R<N> {
|
||||
pub fn coeffs(&self) -> [i64; N] {
|
||||
self.0
|
||||
}
|
||||
pub fn to_rq<const Q: u64>(self) -> crate::Rq<Q, N> {
|
||||
crate::Rq::<Q, N>::from(self)
|
||||
}
|
||||
|
||||
pub fn from_vec(coeffs: Vec<i64>) -> Self {
|
||||
let mut p = coeffs;
|
||||
modulus::<N>(&mut p);
|
||||
Self(array::from_fn(|i| p[i]))
|
||||
}
|
||||
// this method is mostly for tests
|
||||
pub fn from_vec_u64(coeffs: Vec<u64>) -> Self {
|
||||
let coeffs_i64 = coeffs.iter().map(|c| *c as i64).collect();
|
||||
Self::from_vec(coeffs_i64)
|
||||
}
|
||||
pub fn from_vec_f64(coeffs: Vec<f64>) -> Self {
|
||||
let coeffs_i64 = coeffs.iter().map(|c| c.round() as i64).collect();
|
||||
Self::from_vec(coeffs_i64)
|
||||
}
|
||||
pub fn new(coeffs: [i64; N]) -> Self {
|
||||
Self(coeffs)
|
||||
}
|
||||
pub fn mul_by_i64(&self, s: i64) -> Self {
|
||||
Self(array::from_fn(|i| self.0[i] * s))
|
||||
}
|
||||
// performs the multiplication and division over f64, and then it rounds the
|
||||
// result, only applying the mod Q at the end
|
||||
pub fn mul_div_round<const Q: u64>(&self, num: u64, den: u64) -> crate::Rq<Q, N> {
|
||||
let r: Vec<f64> = self
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|e| ((num as f64 * *e as f64) / den as f64).round())
|
||||
.collect();
|
||||
crate::Rq::<Q, N>::from_vec_f64(r)
|
||||
}
|
||||
}
|
||||
pub fn mul_div_round<const Q: u64, const N: usize>(
|
||||
v: Vec<i64>,
|
||||
num: u64,
|
||||
den: u64,
|
||||
) -> crate::Rq<Q, N> {
|
||||
// dbg!(&v);
|
||||
let r: Vec<f64> = v
|
||||
.iter()
|
||||
.map(|e| ((num as f64 * *e as f64) / den as f64).round())
|
||||
.collect();
|
||||
// dbg!(&r);
|
||||
crate::Rq::<Q, N>::from_vec_f64(r)
|
||||
}
|
||||
|
||||
// apply mod (X^N+1)
|
||||
pub fn modulus<const Q: u64, const N: usize>(p: &mut Vec<Zq<Q>>) {
|
||||
pub fn modulus<const N: usize>(p: &mut Vec<i64>) {
|
||||
if p.len() < N {
|
||||
return;
|
||||
}
|
||||
for i in N..p.len() {
|
||||
p[i - N] = p[i - N].clone() - p[i].clone();
|
||||
p[i] = Zq(0);
|
||||
p[i] = 0;
|
||||
}
|
||||
p.truncate(N);
|
||||
}
|
||||
|
||||
// PR stands for PolynomialRing
|
||||
impl<const Q: u64, const N: usize> PR<Q, N> {
|
||||
pub fn coeffs(&self) -> [Zq<Q>; N] {
|
||||
self.coeffs
|
||||
}
|
||||
|
||||
pub fn from_vec(coeffs: Vec<Zq<Q>>) -> Self {
|
||||
let mut p = coeffs;
|
||||
modulus::<Q, N>(&mut p);
|
||||
let coeffs = array::from_fn(|i| p[i]);
|
||||
Self {
|
||||
coeffs,
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
// this method is mostly for tests
|
||||
pub fn from_vec_u64(coeffs: Vec<u64>) -> Self {
|
||||
let coeffs_mod_q = coeffs.iter().map(|c| Zq::new(*c)).collect();
|
||||
Self::from_vec(coeffs_mod_q)
|
||||
}
|
||||
pub fn new(coeffs: [Zq<Q>; N], evals: Option<[Zq<Q>; N]>) -> Self {
|
||||
Self { coeffs, evals }
|
||||
}
|
||||
|
||||
pub fn rand_abs(mut rng: impl Rng, dist: impl Distribution<f64>) -> Result<Self> {
|
||||
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_f64(dist.sample(&mut rng).abs()));
|
||||
Ok(Self {
|
||||
coeffs,
|
||||
evals: None,
|
||||
})
|
||||
}
|
||||
pub fn rand_f64(mut rng: impl Rng, dist: impl Distribution<f64>) -> Result<Self> {
|
||||
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_f64(dist.sample(&mut rng)));
|
||||
Ok(Self {
|
||||
coeffs,
|
||||
evals: None,
|
||||
})
|
||||
}
|
||||
pub fn rand_u64(mut rng: impl Rng, dist: impl Distribution<u64>) -> Result<Self> {
|
||||
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::new(dist.sample(&mut rng)));
|
||||
Ok(Self {
|
||||
coeffs,
|
||||
evals: None,
|
||||
})
|
||||
}
|
||||
// WIP. returns random v \in {0,1}. // TODO {-1, 0, 1}
|
||||
pub fn rand_bin(mut rng: impl Rng, dist: impl Distribution<bool>) -> Result<Self> {
|
||||
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_bool(dist.sample(&mut rng)));
|
||||
Ok(PR {
|
||||
coeffs,
|
||||
evals: None,
|
||||
})
|
||||
}
|
||||
// Warning: this method assumes Q < P
|
||||
pub fn remodule<const P: u64>(&self) -> PR<P, N> {
|
||||
assert!(Q < P);
|
||||
PR::<P, N>::from_vec_u64(self.coeffs().iter().map(|m_i| m_i.0).collect())
|
||||
}
|
||||
|
||||
// TODO review if needed, or if with this interface
|
||||
pub fn mul_by_matrix(&self, m: &Vec<Vec<Zq<Q>>>) -> Result<Vec<Zq<Q>>> {
|
||||
matrix_vec_product(m, &self.coeffs.to_vec())
|
||||
}
|
||||
pub fn mul_by_zq(&self, s: &Zq<Q>) -> Self {
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] * *s),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
pub fn mul_by_u64(&self, s: u64) -> Self {
|
||||
let s = Zq::new(s);
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] * s),
|
||||
// coeffs: self.coeffs.iter().map(|&e| e * s).collect(),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
pub fn mul_by_f64(&self, s: f64) -> Self {
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| Zq::from_f64(self.coeffs[i].0 as f64 * s)),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn mul(&mut self, rhs: &mut Self) -> Self {
|
||||
mul_mut(self, rhs)
|
||||
}
|
||||
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
// TODO simplify
|
||||
let mut str = "";
|
||||
let mut zero = true;
|
||||
for (i, coeff) in self.coeffs.iter().enumerate().rev() {
|
||||
if coeff.0 == 0 {
|
||||
continue;
|
||||
}
|
||||
zero = false;
|
||||
f.write_str(str)?;
|
||||
if coeff.0 != 1 {
|
||||
f.write_str(coeff.0.to_string().as_str())?;
|
||||
if i > 0 {
|
||||
f.write_str("*")?;
|
||||
}
|
||||
}
|
||||
if coeff.0 == 1 && i == 0 {
|
||||
f.write_str(coeff.0.to_string().as_str())?;
|
||||
}
|
||||
if i == 1 {
|
||||
f.write_str("x")?;
|
||||
} else if i > 1 {
|
||||
f.write_str("x^")?;
|
||||
f.write_str(i.to_string().as_str())?;
|
||||
}
|
||||
str = " + ";
|
||||
}
|
||||
if zero {
|
||||
f.write_str("0")?;
|
||||
}
|
||||
|
||||
f.write_str(" mod Z_")?;
|
||||
f.write_str(Q.to_string().as_str())?;
|
||||
f.write_str("/(X^")?;
|
||||
f.write_str(N.to_string().as_str())?;
|
||||
f.write_str("+1)")?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
pub fn matrix_vec_product<const Q: u64>(m: &Vec<Vec<Zq<Q>>>, v: &Vec<Zq<Q>>) -> Result<Vec<Zq<Q>>> {
|
||||
// assert_eq!(m.len(), m[0].len()); // TODO change to returning err
|
||||
// assert_eq!(m.len(), v.len());
|
||||
if m.len() != m[0].len() {
|
||||
return Err(anyhow!("expected 'm' to be a square matrix"));
|
||||
}
|
||||
if m.len() != v.len() {
|
||||
return Err(anyhow!(
|
||||
"m.len: {} should be equal to v.len(): {}",
|
||||
m.len(),
|
||||
v.len(),
|
||||
));
|
||||
}
|
||||
|
||||
Ok(m.iter()
|
||||
.map(|row| {
|
||||
row.iter()
|
||||
.zip(v.iter())
|
||||
.map(|(&row_i, &v_i)| row_i * v_i)
|
||||
.sum()
|
||||
})
|
||||
.collect::<Vec<Zq<Q>>>())
|
||||
}
|
||||
pub fn transpose<const Q: u64>(m: &[Vec<Zq<Q>>]) -> Vec<Vec<Zq<Q>>> {
|
||||
// TODO case when m[0].len()=0
|
||||
// TODO non square matrix
|
||||
let mut r: Vec<Vec<Zq<Q>>> = vec![vec![Zq(0); m[0].len()]; m.len()];
|
||||
for (i, m_row) in m.iter().enumerate() {
|
||||
for (j, m_ij) in m_row.iter().enumerate() {
|
||||
r[j][i] = *m_ij;
|
||||
}
|
||||
}
|
||||
r
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> PartialEq for PR<Q, N> {
|
||||
impl<const N: usize> PartialEq for R<N> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.coeffs == other.coeffs
|
||||
self.0 == other.0
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Add<PR<Q, N>> for PR<Q, N> {
|
||||
impl<const N: usize> ops::Add<R<N>> for R<N> {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: Self) -> Self {
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] + rhs.coeffs[i]),
|
||||
evals: None,
|
||||
}
|
||||
// Self {
|
||||
// coeffs: self
|
||||
// .coeffs
|
||||
// .iter()
|
||||
// .zip(rhs.coeffs)
|
||||
// .map(|(a, b)| *a + b)
|
||||
// .collect(),
|
||||
// evals: None,
|
||||
// }
|
||||
// Self(r.iter_mut().map(|e| e.r#mod()).collect()) // TODO mod should happen auto in +
|
||||
Self(array::from_fn(|i| self.0[i] + rhs.0[i]))
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Add<&PR<Q, N>> for &PR<Q, N> {
|
||||
type Output = PR<Q, N>;
|
||||
impl<const N: usize> ops::Add<&R<N>> for &R<N> {
|
||||
type Output = R<N>;
|
||||
|
||||
fn add(self, rhs: &PR<Q, N>) -> Self::Output {
|
||||
PR {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] + rhs.coeffs[i]),
|
||||
evals: None,
|
||||
}
|
||||
fn add(self, rhs: &R<N>) -> Self::Output {
|
||||
R(array::from_fn(|i| self.0[i] + rhs.0[i]))
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Sub<PR<Q, N>> for PR<Q, N> {
|
||||
impl<const N: usize> ops::Sub<R<N>> for R<N> {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: Self) -> Self {
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] - rhs.coeffs[i]),
|
||||
evals: None,
|
||||
}
|
||||
Self(array::from_fn(|i| self.0[i] - rhs.0[i]))
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Sub<&PR<Q, N>> for &PR<Q, N> {
|
||||
type Output = PR<Q, N>;
|
||||
impl<const N: usize> ops::Sub<&R<N>> for &R<N> {
|
||||
type Output = R<N>;
|
||||
|
||||
fn sub(self, rhs: &PR<Q, N>) -> Self::Output {
|
||||
PR {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] - rhs.coeffs[i]),
|
||||
evals: None,
|
||||
}
|
||||
fn sub(self, rhs: &R<N>) -> Self::Output {
|
||||
R(array::from_fn(|i| self.0[i] - rhs.0[i]))
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Mul<PR<Q, N>> for PR<Q, N> {
|
||||
impl<const N: usize> ops::Mul<R<N>> for R<N> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, rhs: Self) -> Self {
|
||||
mul(&self, &rhs)
|
||||
naive_poly_mul(&self, &rhs)
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Mul<&PR<Q, N>> for &PR<Q, N> {
|
||||
type Output = PR<Q, N>;
|
||||
impl<const N: usize> ops::Mul<&R<N>> for &R<N> {
|
||||
type Output = R<N>;
|
||||
|
||||
fn mul(self, rhs: &PR<Q, N>) -> Self::Output {
|
||||
mul(self, rhs)
|
||||
fn mul(self, rhs: &R<N>) -> Self::Output {
|
||||
naive_poly_mul(self, rhs)
|
||||
}
|
||||
}
|
||||
|
||||
// mul by Zq element
|
||||
impl<const Q: u64, const N: usize> ops::Mul<Zq<Q>> for PR<Q, N> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, s: Zq<Q>) -> Self {
|
||||
self.mul_by_zq(&s)
|
||||
// TODO with NTT(?)
|
||||
pub fn naive_poly_mul<const N: usize>(poly1: &R<N>, poly2: &R<N>) -> R<N> {
|
||||
let poly1: Vec<i128> = poly1.0.iter().map(|c| *c as i128).collect();
|
||||
let poly2: Vec<i128> = poly2.0.iter().map(|c| *c as i128).collect();
|
||||
let mut result: Vec<i128> = vec![0; (N * 2) - 1];
|
||||
for i in 0..N {
|
||||
for j in 0..N {
|
||||
result[i + j] = result[i + j] + poly1[i] * poly2[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Mul<&Zq<Q>> for &PR<Q, N> {
|
||||
type Output = PR<Q, N>;
|
||||
|
||||
fn mul(self, s: &Zq<Q>) -> Self::Output {
|
||||
self.mul_by_zq(s)
|
||||
}
|
||||
// apply mod (X^N + 1))
|
||||
R::<N>::from_vec(result.iter().map(|c| *c as i64).collect())
|
||||
}
|
||||
pub fn naive_mul<const N: usize>(poly1: &R<N>, poly2: &R<N>) -> Vec<i64> {
|
||||
let poly1: Vec<i128> = poly1.0.iter().map(|c| *c as i128).collect();
|
||||
let poly2: Vec<i128> = poly2.0.iter().map(|c| *c as i128).collect();
|
||||
let mut result = vec![0; (N * 2) - 1];
|
||||
for i in 0..N {
|
||||
for j in 0..N {
|
||||
result[i + j] = result[i + j] + poly1[i] * poly2[j];
|
||||
}
|
||||
}
|
||||
result.iter().map(|c| *c as i64).collect()
|
||||
}
|
||||
|
||||
// mul by u64
|
||||
impl<const Q: u64, const N: usize> ops::Mul<u64> for PR<Q, N> {
|
||||
impl<const N: usize> ops::Mul<u64> for R<N> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, s: u64) -> Self {
|
||||
self.mul_by_u64(s)
|
||||
self.mul_by_i64(s as i64)
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Mul<&u64> for &PR<Q, N> {
|
||||
type Output = PR<Q, N>;
|
||||
impl<const N: usize> ops::Mul<&u64> for &R<N> {
|
||||
type Output = R<N>;
|
||||
|
||||
fn mul(self, s: &u64) -> Self::Output {
|
||||
self.mul_by_u64(*s)
|
||||
self.mul_by_i64(*s as i64)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> ops::Neg for PR<Q, N> {
|
||||
impl<const N: usize> ops::Neg for R<N> {
|
||||
type Output = Self;
|
||||
|
||||
fn neg(self) -> Self::Output {
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| -self.coeffs[i]),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn mul_mut<const Q: u64, const N: usize>(lhs: &mut PR<Q, N>, rhs: &mut PR<Q, N>) -> PR<Q, N> {
|
||||
// reuse evaluations if already computed
|
||||
if !lhs.evals.is_some() {
|
||||
lhs.evals = Some(NTT::<Q, N>::ntt(lhs.coeffs));
|
||||
};
|
||||
if !rhs.evals.is_some() {
|
||||
rhs.evals = Some(NTT::<Q, N>::ntt(rhs.coeffs));
|
||||
};
|
||||
let lhs_evals = lhs.evals.unwrap();
|
||||
let rhs_evals = rhs.evals.unwrap();
|
||||
|
||||
let c_ntt: [Zq<Q>; N] = array::from_fn(|i| lhs_evals[i] * rhs_evals[i]);
|
||||
let c = NTT::<Q, { N }>::intt(c_ntt);
|
||||
PR::new(c, Some(c_ntt))
|
||||
}
|
||||
fn mul<const Q: u64, const N: usize>(lhs: &PR<Q, N>, rhs: &PR<Q, N>) -> PR<Q, N> {
|
||||
// reuse evaluations if already computed
|
||||
let lhs_evals = if lhs.evals.is_some() {
|
||||
lhs.evals.unwrap()
|
||||
} else {
|
||||
NTT::<Q, N>::ntt(lhs.coeffs)
|
||||
};
|
||||
let rhs_evals = if rhs.evals.is_some() {
|
||||
rhs.evals.unwrap()
|
||||
} else {
|
||||
NTT::<Q, N>::ntt(rhs.coeffs)
|
||||
};
|
||||
|
||||
let c_ntt: [Zq<Q>; N] = array::from_fn(|i| lhs_evals[i] * rhs_evals[i]);
|
||||
let c = NTT::<Q, { N }>::intt(c_ntt);
|
||||
PR::new(c, Some(c_ntt))
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> fmt::Display for PR<Q, N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
self.fmt(f)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> fmt::Debug for PR<Q, N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
self.fmt(f)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn poly_ring() {
|
||||
// the test values used are generated with SageMath
|
||||
const Q: u64 = 7;
|
||||
const N: usize = 3;
|
||||
|
||||
// p = 1x + 2x^2 + 3x^3 + 4 x^4 + 5 x^5 in R=Z_q[X]/(X^n +1)
|
||||
let p = PR::<Q, N>::from_vec_u64(vec![0u64, 1, 2, 3, 4, 5]);
|
||||
assert_eq!(p.to_string(), "4*x^2 + 4*x + 4 mod Z_7/(X^3+1)");
|
||||
|
||||
// try with coefficients bigger than Q
|
||||
let p = PR::<Q, N>::from_vec_u64(vec![0u64, 1, Q + 2, 3, 4, 5]);
|
||||
assert_eq!(p.to_string(), "4*x^2 + 4*x + 4 mod Z_7/(X^3+1)");
|
||||
|
||||
// try with other ring
|
||||
let p = PR::<7, 4>::from_vec_u64(vec![0u64, 1, 2, 3, 4, 5]);
|
||||
assert_eq!(p.to_string(), "3*x^3 + 2*x^2 + 3*x + 3 mod Z_7/(X^4+1)");
|
||||
|
||||
let p = PR::<Q, N>::from_vec_u64(vec![0u64, 0, 0, 0, 4, 5]);
|
||||
assert_eq!(p.to_string(), "2*x^2 + 3*x mod Z_7/(X^3+1)");
|
||||
|
||||
let p = PR::<Q, N>::from_vec_u64(vec![5u64, 4, 5, 2, 1, 0]);
|
||||
assert_eq!(p.to_string(), "5*x^2 + 3*x + 3 mod Z_7/(X^3+1)");
|
||||
|
||||
let a = PR::<Q, N>::from_vec_u64(vec![0u64, 1, 2, 3, 4, 5]);
|
||||
assert_eq!(a.to_string(), "4*x^2 + 4*x + 4 mod Z_7/(X^3+1)");
|
||||
|
||||
let b = PR::<Q, N>::from_vec_u64(vec![5u64, 4, 3, 2, 1, 0]);
|
||||
assert_eq!(b.to_string(), "3*x^2 + 3*x + 3 mod Z_7/(X^3+1)");
|
||||
|
||||
// add
|
||||
assert_eq!((a.clone() + b.clone()).to_string(), "0 mod Z_7/(X^3+1)");
|
||||
assert_eq!((&a + &b).to_string(), "0 mod Z_7/(X^3+1)");
|
||||
// assert_eq!((a.0.clone() + b.0.clone()).to_string(), "[0, 0, 0]"); // TODO
|
||||
|
||||
// sub
|
||||
assert_eq!(
|
||||
(a.clone() - b.clone()).to_string(),
|
||||
"x^2 + x + 1 mod Z_7/(X^3+1)"
|
||||
);
|
||||
}
|
||||
|
||||
fn test_mul_opt<const Q: u64, const N: usize>(
|
||||
a: [u64; N],
|
||||
b: [u64; N],
|
||||
expected_c: [u64; N],
|
||||
) -> Result<()> {
|
||||
let a: [Zq<Q>; N] = array::from_fn(|i| Zq::new(a[i]));
|
||||
let mut a = PR::new(a, None);
|
||||
let b: [Zq<Q>; N] = array::from_fn(|i| Zq::new(b[i]));
|
||||
let mut b = PR::new(b, None);
|
||||
let expected_c: [Zq<Q>; N] = array::from_fn(|i| Zq::new(expected_c[i]));
|
||||
let expected_c = PR::new(expected_c, None);
|
||||
|
||||
let c = mul_mut(&mut a, &mut b);
|
||||
assert_eq!(c, expected_c);
|
||||
Ok(())
|
||||
}
|
||||
#[test]
|
||||
fn test_mul() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 4;
|
||||
|
||||
let a: [u64; N] = [1u64, 2, 3, 4];
|
||||
let b: [u64; N] = [1u64, 2, 3, 4];
|
||||
let c: [u64; N] = [65513, 65517, 65531, 20];
|
||||
test_mul_opt::<Q, N>(a, b, c)?;
|
||||
|
||||
let a: [u64; N] = [0u64, 0, 0, 2];
|
||||
let b: [u64; N] = [0u64, 0, 0, 2];
|
||||
let c: [u64; N] = [0u64, 0, 65533, 0];
|
||||
test_mul_opt::<Q, N>(a, b, c)?;
|
||||
|
||||
// TODO more testvectors
|
||||
|
||||
Ok(())
|
||||
Self(array::from_fn(|i| -self.0[i]))
|
||||
}
|
||||
}
|
||||
|
||||
504
arithmetic/src/ringq.rs
Normal file
504
arithmetic/src/ringq.rs
Normal file
@@ -0,0 +1,504 @@
|
||||
//! Polynomial ring Z_q[X]/(X^N+1)
|
||||
//!
|
||||
|
||||
use rand::{distributions::Distribution, Rng};
|
||||
use std::array;
|
||||
use std::fmt;
|
||||
use std::ops;
|
||||
|
||||
use crate::ntt::NTT;
|
||||
use crate::zq::{modulus_u64, Zq};
|
||||
use anyhow::{anyhow, Result};
|
||||
|
||||
/// PolynomialRing element, where the PolynomialRing is R = Z_q[X]/(X^n +1)
|
||||
/// The implementation assumes that q is prime.
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct Rq<const Q: u64, const N: usize> {
|
||||
pub(crate) coeffs: [Zq<Q>; N],
|
||||
|
||||
// evals are set when doig a PRxPR multiplication, so it can be reused in future
|
||||
// multiplications avoiding recomputing it
|
||||
pub(crate) evals: Option<[Zq<Q>; N]>,
|
||||
}
|
||||
|
||||
// TODO define a trait "PolynomialRingTrait" or similar, so that when other structs use it can just
|
||||
// use the trait and not need to add '<Q, N>' to their params
|
||||
|
||||
impl<const Q: u64, const N: usize> From<crate::ring::R<N>> for Rq<Q, N> {
|
||||
fn from(r: crate::ring::R<N>) -> Self {
|
||||
Self::from_vec(
|
||||
r.coeffs()
|
||||
.iter()
|
||||
.map(|e| Zq::<Q>::from_f64(*e as f64))
|
||||
.collect(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// apply mod (X^N+1)
|
||||
pub fn modulus<const Q: u64, const N: usize>(p: &mut Vec<Zq<Q>>) {
|
||||
if p.len() < N {
|
||||
return;
|
||||
}
|
||||
for i in N..p.len() {
|
||||
p[i - N] = p[i - N].clone() - p[i].clone();
|
||||
p[i] = Zq(0);
|
||||
}
|
||||
p.truncate(N);
|
||||
}
|
||||
|
||||
// PR stands for PolynomialRing
|
||||
impl<const Q: u64, const N: usize> Rq<Q, N> {
|
||||
pub fn coeffs(&self) -> [Zq<Q>; N] {
|
||||
self.coeffs
|
||||
}
|
||||
pub fn to_r(self) -> crate::R<N> {
|
||||
crate::R::<N>::from(self)
|
||||
}
|
||||
|
||||
pub fn from_vec(coeffs: Vec<Zq<Q>>) -> Self {
|
||||
let mut p = coeffs;
|
||||
modulus::<Q, N>(&mut p);
|
||||
let coeffs = array::from_fn(|i| p[i]);
|
||||
Self {
|
||||
coeffs,
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
// this method is mostly for tests
|
||||
pub fn from_vec_u64(coeffs: Vec<u64>) -> Self {
|
||||
let coeffs_mod_q = coeffs.iter().map(|c| Zq::from_u64(*c)).collect();
|
||||
Self::from_vec(coeffs_mod_q)
|
||||
}
|
||||
pub fn from_vec_f64(coeffs: Vec<f64>) -> Self {
|
||||
let coeffs_mod_q = coeffs.iter().map(|c| Zq::from_f64(*c)).collect();
|
||||
Self::from_vec(coeffs_mod_q)
|
||||
}
|
||||
pub fn from_vec_i64(coeffs: Vec<i64>) -> Self {
|
||||
let coeffs_mod_q = coeffs.iter().map(|c| Zq::from_f64(*c as f64)).collect();
|
||||
Self::from_vec(coeffs_mod_q)
|
||||
}
|
||||
pub fn new(coeffs: [Zq<Q>; N], evals: Option<[Zq<Q>; N]>) -> Self {
|
||||
Self { coeffs, evals }
|
||||
}
|
||||
|
||||
pub fn rand_abs(mut rng: impl Rng, dist: impl Distribution<f64>) -> Result<Self> {
|
||||
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_f64(dist.sample(&mut rng).abs()));
|
||||
Ok(Self {
|
||||
coeffs,
|
||||
evals: None,
|
||||
})
|
||||
}
|
||||
pub fn rand_f64_abs(mut rng: impl Rng, dist: impl Distribution<f64>) -> Result<Self> {
|
||||
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_f64(dist.sample(&mut rng).abs()));
|
||||
Ok(Self {
|
||||
coeffs,
|
||||
evals: None,
|
||||
})
|
||||
}
|
||||
pub fn rand_f64(mut rng: impl Rng, dist: impl Distribution<f64>) -> Result<Self> {
|
||||
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_f64(dist.sample(&mut rng)));
|
||||
Ok(Self {
|
||||
coeffs,
|
||||
evals: None,
|
||||
})
|
||||
}
|
||||
pub fn rand_u64(mut rng: impl Rng, dist: impl Distribution<u64>) -> Result<Self> {
|
||||
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_u64(dist.sample(&mut rng)));
|
||||
Ok(Self {
|
||||
coeffs,
|
||||
evals: None,
|
||||
})
|
||||
}
|
||||
// WIP. returns random v \in {0,1}. // TODO {-1, 0, 1}
|
||||
pub fn rand_bin(mut rng: impl Rng, dist: impl Distribution<bool>) -> Result<Self> {
|
||||
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_bool(dist.sample(&mut rng)));
|
||||
Ok(Rq {
|
||||
coeffs,
|
||||
evals: None,
|
||||
})
|
||||
}
|
||||
// Warning: this method will behave differently depending on the values P and Q:
|
||||
// if Q<P, it just 'renames' the modulus parameter to P
|
||||
// if Q>=P, it crops to mod P
|
||||
pub fn remodule<const P: u64>(&self) -> Rq<P, N> {
|
||||
Rq::<P, N>::from_vec_u64(self.coeffs().iter().map(|m_i| m_i.0).collect())
|
||||
}
|
||||
// applies mod(T) to all coefficients of self
|
||||
pub fn coeffs_mod<const T: u64>(&self) -> Self {
|
||||
Rq::<Q, N>::from_vec_u64(
|
||||
self.coeffs()
|
||||
.iter()
|
||||
.map(|m_i| modulus_u64::<T>(m_i.0))
|
||||
.collect(),
|
||||
)
|
||||
}
|
||||
|
||||
// TODO review if needed, or if with this interface
|
||||
pub fn mul_by_matrix(&self, m: &Vec<Vec<Zq<Q>>>) -> Result<Vec<Zq<Q>>> {
|
||||
matrix_vec_product(m, &self.coeffs.to_vec())
|
||||
}
|
||||
pub fn mul_by_zq(&self, s: &Zq<Q>) -> Self {
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] * *s),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
pub fn mul_by_u64(&self, s: u64) -> Self {
|
||||
let s = Zq::from_u64(s);
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] * s),
|
||||
// coeffs: self.coeffs.iter().map(|&e| e * s).collect(),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
pub fn mul_by_f64(&self, s: f64) -> Self {
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| Zq::from_f64(self.coeffs[i].0 as f64 * s)),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn mul(&mut self, rhs: &mut Self) -> Self {
|
||||
mul_mut(self, rhs)
|
||||
}
|
||||
// divides by the given scalar 's' and rounds, returning a Rq<Q,N>
|
||||
// TODO rm
|
||||
pub fn div_round(&self, s: u64) -> Self {
|
||||
let r: Vec<f64> = self
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|e| (e.0 as f64 / s as f64).round())
|
||||
.collect();
|
||||
Rq::<Q, N>::from_vec_f64(r)
|
||||
}
|
||||
// returns [ [(num/den) * self].round() ] mod q
|
||||
// ie. performs the multiplication and division over f64, and then it rounds the
|
||||
// result, only applying the mod Q at the end
|
||||
pub fn mul_div_round(&self, num: u64, den: u64) -> Self {
|
||||
let r: Vec<f64> = self
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|e| ((num as f64 * e.0 as f64) / den as f64).round())
|
||||
.collect();
|
||||
Rq::<Q, N>::from_vec_f64(r)
|
||||
}
|
||||
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
// TODO simplify
|
||||
let mut str = "";
|
||||
let mut zero = true;
|
||||
for (i, coeff) in self.coeffs.iter().enumerate().rev() {
|
||||
if coeff.0 == 0 {
|
||||
continue;
|
||||
}
|
||||
zero = false;
|
||||
f.write_str(str)?;
|
||||
if coeff.0 != 1 {
|
||||
f.write_str(coeff.0.to_string().as_str())?;
|
||||
if i > 0 {
|
||||
f.write_str("*")?;
|
||||
}
|
||||
}
|
||||
if coeff.0 == 1 && i == 0 {
|
||||
f.write_str(coeff.0.to_string().as_str())?;
|
||||
}
|
||||
if i == 1 {
|
||||
f.write_str("x")?;
|
||||
} else if i > 1 {
|
||||
f.write_str("x^")?;
|
||||
f.write_str(i.to_string().as_str())?;
|
||||
}
|
||||
str = " + ";
|
||||
}
|
||||
if zero {
|
||||
f.write_str("0")?;
|
||||
}
|
||||
|
||||
f.write_str(" mod Z_")?;
|
||||
f.write_str(Q.to_string().as_str())?;
|
||||
f.write_str("/(X^")?;
|
||||
f.write_str(N.to_string().as_str())?;
|
||||
f.write_str("+1)")?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn infinity_norm(&self) -> u64 {
|
||||
self.coeffs().iter().map(|x| x.0).fold(0, |a, b| a.max(b))
|
||||
}
|
||||
}
|
||||
pub fn matrix_vec_product<const Q: u64>(m: &Vec<Vec<Zq<Q>>>, v: &Vec<Zq<Q>>) -> Result<Vec<Zq<Q>>> {
|
||||
// assert_eq!(m.len(), m[0].len()); // TODO change to returning err
|
||||
// assert_eq!(m.len(), v.len());
|
||||
if m.len() != m[0].len() {
|
||||
return Err(anyhow!("expected 'm' to be a square matrix"));
|
||||
}
|
||||
if m.len() != v.len() {
|
||||
return Err(anyhow!(
|
||||
"m.len: {} should be equal to v.len(): {}",
|
||||
m.len(),
|
||||
v.len(),
|
||||
));
|
||||
}
|
||||
|
||||
Ok(m.iter()
|
||||
.map(|row| {
|
||||
row.iter()
|
||||
.zip(v.iter())
|
||||
.map(|(&row_i, &v_i)| row_i * v_i)
|
||||
.sum()
|
||||
})
|
||||
.collect::<Vec<Zq<Q>>>())
|
||||
}
|
||||
pub fn transpose<const Q: u64>(m: &[Vec<Zq<Q>>]) -> Vec<Vec<Zq<Q>>> {
|
||||
// TODO case when m[0].len()=0
|
||||
// TODO non square matrix
|
||||
let mut r: Vec<Vec<Zq<Q>>> = vec![vec![Zq(0); m[0].len()]; m.len()];
|
||||
for (i, m_row) in m.iter().enumerate() {
|
||||
for (j, m_ij) in m_row.iter().enumerate() {
|
||||
r[j][i] = *m_ij;
|
||||
}
|
||||
}
|
||||
r
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> PartialEq for Rq<Q, N> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.coeffs == other.coeffs
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Add<Rq<Q, N>> for Rq<Q, N> {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: Self) -> Self {
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] + rhs.coeffs[i]),
|
||||
evals: None,
|
||||
}
|
||||
// Self {
|
||||
// coeffs: self
|
||||
// .coeffs
|
||||
// .iter()
|
||||
// .zip(rhs.coeffs)
|
||||
// .map(|(a, b)| *a + b)
|
||||
// .collect(),
|
||||
// evals: None,
|
||||
// }
|
||||
// Self(r.iter_mut().map(|e| e.r#mod()).collect()) // TODO mod should happen auto in +
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Add<&Rq<Q, N>> for &Rq<Q, N> {
|
||||
type Output = Rq<Q, N>;
|
||||
|
||||
fn add(self, rhs: &Rq<Q, N>) -> Self::Output {
|
||||
Rq {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] + rhs.coeffs[i]),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Sub<Rq<Q, N>> for Rq<Q, N> {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: Self) -> Self {
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] - rhs.coeffs[i]),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Sub<&Rq<Q, N>> for &Rq<Q, N> {
|
||||
type Output = Rq<Q, N>;
|
||||
|
||||
fn sub(self, rhs: &Rq<Q, N>) -> Self::Output {
|
||||
Rq {
|
||||
coeffs: array::from_fn(|i| self.coeffs[i] - rhs.coeffs[i]),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Mul<Rq<Q, N>> for Rq<Q, N> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, rhs: Self) -> Self {
|
||||
mul(&self, &rhs)
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Mul<&Rq<Q, N>> for &Rq<Q, N> {
|
||||
type Output = Rq<Q, N>;
|
||||
|
||||
fn mul(self, rhs: &Rq<Q, N>) -> Self::Output {
|
||||
mul(self, rhs)
|
||||
}
|
||||
}
|
||||
|
||||
// mul by Zq element
|
||||
impl<const Q: u64, const N: usize> ops::Mul<Zq<Q>> for Rq<Q, N> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, s: Zq<Q>) -> Self {
|
||||
self.mul_by_zq(&s)
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Mul<&Zq<Q>> for &Rq<Q, N> {
|
||||
type Output = Rq<Q, N>;
|
||||
|
||||
fn mul(self, s: &Zq<Q>) -> Self::Output {
|
||||
self.mul_by_zq(s)
|
||||
}
|
||||
}
|
||||
// mul by u64
|
||||
impl<const Q: u64, const N: usize> ops::Mul<u64> for Rq<Q, N> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, s: u64) -> Self {
|
||||
self.mul_by_u64(s)
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> ops::Mul<&u64> for &Rq<Q, N> {
|
||||
type Output = Rq<Q, N>;
|
||||
|
||||
fn mul(self, s: &u64) -> Self::Output {
|
||||
self.mul_by_u64(*s)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> ops::Neg for Rq<Q, N> {
|
||||
type Output = Self;
|
||||
|
||||
fn neg(self) -> Self::Output {
|
||||
Self {
|
||||
coeffs: array::from_fn(|i| -self.coeffs[i]),
|
||||
evals: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn mul_mut<const Q: u64, const N: usize>(lhs: &mut Rq<Q, N>, rhs: &mut Rq<Q, N>) -> Rq<Q, N> {
|
||||
// reuse evaluations if already computed
|
||||
if !lhs.evals.is_some() {
|
||||
lhs.evals = Some(NTT::<Q, N>::ntt(lhs.coeffs));
|
||||
};
|
||||
if !rhs.evals.is_some() {
|
||||
rhs.evals = Some(NTT::<Q, N>::ntt(rhs.coeffs));
|
||||
};
|
||||
let lhs_evals = lhs.evals.unwrap();
|
||||
let rhs_evals = rhs.evals.unwrap();
|
||||
|
||||
let c_ntt: [Zq<Q>; N] = array::from_fn(|i| lhs_evals[i] * rhs_evals[i]);
|
||||
let c = NTT::<Q, { N }>::intt(c_ntt);
|
||||
Rq::new(c, Some(c_ntt))
|
||||
}
|
||||
fn mul<const Q: u64, const N: usize>(lhs: &Rq<Q, N>, rhs: &Rq<Q, N>) -> Rq<Q, N> {
|
||||
// reuse evaluations if already computed
|
||||
let lhs_evals = if lhs.evals.is_some() {
|
||||
lhs.evals.unwrap()
|
||||
} else {
|
||||
NTT::<Q, N>::ntt(lhs.coeffs)
|
||||
};
|
||||
let rhs_evals = if rhs.evals.is_some() {
|
||||
rhs.evals.unwrap()
|
||||
} else {
|
||||
NTT::<Q, N>::ntt(rhs.coeffs)
|
||||
};
|
||||
|
||||
let c_ntt: [Zq<Q>; N] = array::from_fn(|i| lhs_evals[i] * rhs_evals[i]);
|
||||
let c = NTT::<Q, { N }>::intt(c_ntt);
|
||||
Rq::new(c, Some(c_ntt))
|
||||
}
|
||||
|
||||
impl<const Q: u64, const N: usize> fmt::Display for Rq<Q, N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
self.fmt(f)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
impl<const Q: u64, const N: usize> fmt::Debug for Rq<Q, N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
self.fmt(f)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn poly_ring() {
|
||||
// the test values used are generated with SageMath
|
||||
const Q: u64 = 7;
|
||||
const N: usize = 3;
|
||||
|
||||
// p = 1x + 2x^2 + 3x^3 + 4 x^4 + 5 x^5 in R=Z_q[X]/(X^n +1)
|
||||
let p = Rq::<Q, N>::from_vec_u64(vec![0u64, 1, 2, 3, 4, 5]);
|
||||
assert_eq!(p.to_string(), "4*x^2 + 4*x + 4 mod Z_7/(X^3+1)");
|
||||
|
||||
// try with coefficients bigger than Q
|
||||
let p = Rq::<Q, N>::from_vec_u64(vec![0u64, 1, Q + 2, 3, 4, 5]);
|
||||
assert_eq!(p.to_string(), "4*x^2 + 4*x + 4 mod Z_7/(X^3+1)");
|
||||
|
||||
// try with other ring
|
||||
let p = Rq::<7, 4>::from_vec_u64(vec![0u64, 1, 2, 3, 4, 5]);
|
||||
assert_eq!(p.to_string(), "3*x^3 + 2*x^2 + 3*x + 3 mod Z_7/(X^4+1)");
|
||||
|
||||
let p = Rq::<Q, N>::from_vec_u64(vec![0u64, 0, 0, 0, 4, 5]);
|
||||
assert_eq!(p.to_string(), "2*x^2 + 3*x mod Z_7/(X^3+1)");
|
||||
|
||||
let p = Rq::<Q, N>::from_vec_u64(vec![5u64, 4, 5, 2, 1, 0]);
|
||||
assert_eq!(p.to_string(), "5*x^2 + 3*x + 3 mod Z_7/(X^3+1)");
|
||||
|
||||
let a = Rq::<Q, N>::from_vec_u64(vec![0u64, 1, 2, 3, 4, 5]);
|
||||
assert_eq!(a.to_string(), "4*x^2 + 4*x + 4 mod Z_7/(X^3+1)");
|
||||
|
||||
let b = Rq::<Q, N>::from_vec_u64(vec![5u64, 4, 3, 2, 1, 0]);
|
||||
assert_eq!(b.to_string(), "3*x^2 + 3*x + 3 mod Z_7/(X^3+1)");
|
||||
|
||||
// add
|
||||
assert_eq!((a.clone() + b.clone()).to_string(), "0 mod Z_7/(X^3+1)");
|
||||
assert_eq!((&a + &b).to_string(), "0 mod Z_7/(X^3+1)");
|
||||
// assert_eq!((a.0.clone() + b.0.clone()).to_string(), "[0, 0, 0]"); // TODO
|
||||
|
||||
// sub
|
||||
assert_eq!(
|
||||
(a.clone() - b.clone()).to_string(),
|
||||
"x^2 + x + 1 mod Z_7/(X^3+1)"
|
||||
);
|
||||
}
|
||||
|
||||
fn test_mul_opt<const Q: u64, const N: usize>(
|
||||
a: [u64; N],
|
||||
b: [u64; N],
|
||||
expected_c: [u64; N],
|
||||
) -> Result<()> {
|
||||
let a: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(a[i]));
|
||||
let mut a = Rq::new(a, None);
|
||||
let b: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(b[i]));
|
||||
let mut b = Rq::new(b, None);
|
||||
let expected_c: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(expected_c[i]));
|
||||
let expected_c = Rq::new(expected_c, None);
|
||||
|
||||
let c = mul_mut(&mut a, &mut b);
|
||||
assert_eq!(c, expected_c);
|
||||
Ok(())
|
||||
}
|
||||
#[test]
|
||||
fn test_mul() -> Result<()> {
|
||||
const Q: u64 = 2u64.pow(16) + 1;
|
||||
const N: usize = 4;
|
||||
|
||||
let a: [u64; N] = [1u64, 2, 3, 4];
|
||||
let b: [u64; N] = [1u64, 2, 3, 4];
|
||||
let c: [u64; N] = [65513, 65517, 65531, 20];
|
||||
test_mul_opt::<Q, N>(a, b, c)?;
|
||||
|
||||
let a: [u64; N] = [0u64, 0, 0, 2];
|
||||
let b: [u64; N] = [0u64, 0, 0, 2];
|
||||
let c: [u64; N] = [0u64, 0, 65533, 0];
|
||||
test_mul_opt::<Q, N>(a, b, c)?;
|
||||
|
||||
// TODO more testvectors
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -12,22 +12,36 @@ pub struct Zq<const Q: u64>(pub u64);
|
||||
// }
|
||||
// }
|
||||
|
||||
pub(crate) fn modulus_u64<const Q: u64>(e: u64) -> u64 {
|
||||
(e % Q + Q) % Q
|
||||
}
|
||||
impl<const Q: u64> Zq<Q> {
|
||||
pub fn new(e: u64) -> Self {
|
||||
pub fn from_u64(e: u64) -> Self {
|
||||
if e >= Q {
|
||||
return Zq(e % Q);
|
||||
// (e % Q + Q) % Q
|
||||
return Zq(modulus_u64::<Q>(e));
|
||||
// return Zq(e % Q);
|
||||
}
|
||||
Zq(e)
|
||||
}
|
||||
pub fn from_f64(e: f64) -> Self {
|
||||
// WIP method
|
||||
let e: i64 = e.round() as i64;
|
||||
if e < 0 {
|
||||
return Zq((Q as i64 + e) as u64);
|
||||
} else if e >= Q as i64 {
|
||||
return Zq((e % Q as i64) as u64);
|
||||
let q = Q as i64;
|
||||
if e < 0 || e >= q {
|
||||
return Zq(((e % q + q) % q) as u64);
|
||||
}
|
||||
Zq(e as u64)
|
||||
|
||||
// if e < 0 {
|
||||
// // dbg!(&e);
|
||||
// // dbg!(Zq::<Q>(((Q as i64 + e) % Q as i64) as u64));
|
||||
// // return Zq(((Q as i64 + e) % Q as i64) as u64);
|
||||
// return Zq(e as u64 % Q);
|
||||
// } else if e >= Q as i64 {
|
||||
// return Zq((e % Q as i64) as u64);
|
||||
// }
|
||||
// Zq(e as u64)
|
||||
}
|
||||
pub fn from_bool(b: bool) -> Self {
|
||||
if b {
|
||||
@@ -83,7 +97,7 @@ impl<const Q: u64> Zq<Q> {
|
||||
// if t < 0 {
|
||||
// t = t + q;
|
||||
// }
|
||||
return Zq::new(t);
|
||||
return Zq::from_u64(t);
|
||||
}
|
||||
pub fn inv(self) -> Zq<Q> {
|
||||
let (g, x, _) = Self::egcd(self.0 as i128, Q as i128);
|
||||
|
||||
Reference in New Issue
Block a user