add wip version of tensor & relinearization

This commit is contained in:
2025-06-22 15:51:20 +02:00
parent f3a368ab6a
commit d2fc32ac0c
10 changed files with 1145 additions and 469 deletions

View File

@@ -7,5 +7,6 @@ edition = "2024"
anyhow = { workspace = true }
rand = { workspace = true }
rand_distr = { workspace = true }
itertools = { workspace = true }
arithmetic = { path="../arithmetic" }

View File

@@ -10,26 +10,100 @@ use rand::Rng;
use rand_distr::{Normal, Uniform};
use std::ops;
use arithmetic::{Zq, PR};
use arithmetic::{Rq, Zq, R};
// error deviation for the Gaussian(Normal) distribution
// sigma=3.2 from: https://eprint.iacr.org/2022/162.pdf page 5
const ERR_SIGMA: f64 = 3.2;
// const ERR_SIGMA: f64 = 0.0; // TODO WIP
#[derive(Clone, Debug)]
pub struct SecretKey<const Q: u64, const N: usize>(PR<Q, N>);
pub struct SecretKey<const Q: u64, const N: usize>(Rq<Q, N>);
#[derive(Clone, Debug)]
pub struct PublicKey<const Q: u64, const N: usize>(PR<Q, N>, PR<Q, N>);
pub struct PublicKey<const Q: u64, const N: usize>(Rq<Q, N>, Rq<Q, N>);
/// Relinearization key
#[derive(Clone, Debug)]
pub struct RLK<const PQ: u64, const N: usize>(Rq<PQ, N>, Rq<PQ, N>);
// impl<const PQ: u64, const N: usize> RLK<Q, PQ, N> {
// // const P: u64 = PQ / Q;
//
// // const PQ: u64 = P * Q;
// }
// RLWE ciphertext
#[derive(Clone, Debug)]
pub struct RLWE<const Q: u64, const N: usize>(PR<Q, N>, PR<Q, N>);
pub struct RLWE<const Q: u64, const N: usize>(Rq<Q, N>, Rq<Q, N>);
impl<const Q: u64, const N: usize> RLWE<Q, N> {
fn add(lhs: Self, rhs: Self) -> Self {
RLWE::<Q, N>(lhs.0 + rhs.0, lhs.1 + rhs.1)
}
pub fn remodule<const P: u64>(&self) -> RLWE<P, N> {
let x = self.0.remodule::<P>();
let y = self.1.remodule::<P>();
RLWE::<P, N>(x, y)
}
fn tensor<const PQ: u64, const T: u64>(a: &Self, b: &Self) -> (Rq<Q, N>, Rq<Q, N>, Rq<Q, N>) {
// expand Q->PQ // TODO rm
// get the coefficients in Z, ie. interpret a,b \in R (instead of R_q)
let a0: R<N> = a.0.to_r();
let a1: R<N> = a.1.to_r();
let b0: R<N> = b.0.to_r();
let b1: R<N> = b.1.to_r();
// tensor (\in R)
use arithmetic::ring::naive_mul;
let c0: Vec<i64> = naive_mul(&a0, &b0);
let c1_l: Vec<i64> = naive_mul(&a0, &b1);
let c1_r = naive_mul(&a1, &b0);
let c1: Vec<i64> = itertools::zip_eq(c1_l, c1_r).map(|(l, r)| l + r).collect();
let c2: Vec<i64> = naive_mul(&a1, &b1);
// scale down, module Q, so result is \in R_q
let c0: Rq<Q, N> = arithmetic::ring::mul_div_round::<Q, N>(c0, T, Q);
let c1: Rq<Q, N> = arithmetic::ring::mul_div_round::<Q, N>(c1, T, Q);
let c2: Rq<Q, N> = arithmetic::ring::mul_div_round::<Q, N>(c2, T, Q);
(c0, c1, c2)
}
fn tensor_DBG<const PQ: u64, const T: u64>(
a: &Self,
b: &Self,
) -> (Rq<Q, N>, Rq<Q, N>, Rq<Q, N>) {
// iacr 2021-204:
// expand Q->PQ
// let a: RLWE<PQ, N> = a.remodule::<PQ>();
// let b: RLWE<PQ, N> = b.remodule::<PQ>();
// tensor
let c0: Rq<Q, N> = a.0 * b.0; // NTT mul
let c1: Rq<Q, N> = a.0 * b.1 + a.1 * b.0; // NTT mul
let c2: Rq<Q, N> = a.1 * b.1; // NTT mul
// scale down
let c0: Rq<Q, N> = c0.mul_div_round(T, Q);
let c1: Rq<Q, N> = c1.mul_div_round(T, Q);
let c2: Rq<Q, N> = c2.mul_div_round(T, Q);
// expand^-1 PQ->Q
// let c0: Rq<Q, N> = c0.remodule::<Q>();
// let c1: Rq<Q, N> = c1.remodule::<Q>();
// let c2: Rq<Q, N> = c2.remodule::<Q>();
(c0, c1, c2)
}
/// ciphertext multiplication
fn mul<const PQ: u64, const T: u64>(rlk: &RLK<PQ, N>, a: &Self, b: &Self) -> Self {
let (c0, c1, c2) = Self::tensor::<PQ, T>(a, b);
BFV::<Q, N, T>::relinearize_204::<PQ>(&rlk, &c0, &c1, &c2)
}
}
// naive mul in the ring Rq, reusing the ring::naive_mul and then applying mod(X^N +1)
fn tmp_naive_mul<const Q: u64, const N: usize>(a: Rq<Q, N>, b: Rq<Q, N>) -> Rq<Q, N> {
Rq::<Q, N>::from_vec_i64(arithmetic::ring::naive_mul(&a.to_r(), &b.to_r()))
}
impl<const Q: u64, const N: usize> ops::Add<RLWE<Q, N>> for RLWE<Q, N> {
@@ -39,17 +113,15 @@ impl<const Q: u64, const N: usize> ops::Add<RLWE<Q, N>> for RLWE<Q, N> {
}
}
impl<const Q: u64, const N: usize, const T: u64> ops::Add<&PR<T, N>> for &RLWE<Q, N> {
impl<const Q: u64, const N: usize, const T: u64> ops::Add<&Rq<T, N>> for &RLWE<Q, N> {
type Output = RLWE<Q, N>;
fn add(self, rhs: &PR<T, N>) -> Self::Output {
// todo!()
fn add(self, rhs: &Rq<T, N>) -> Self::Output {
BFV::<Q, N, T>::add_const(self, rhs)
}
}
impl<const Q: u64, const N: usize, const T: u64> ops::Mul<&PR<T, N>> for &RLWE<Q, N> {
impl<const Q: u64, const N: usize, const T: u64> ops::Mul<&Rq<T, N>> for &RLWE<Q, N> {
type Output = RLWE<Q, N>;
fn mul(self, rhs: &PR<T, N>) -> Self::Output {
// todo!()
fn mul(self, rhs: &Rq<T, N>) -> Self::Output {
BFV::<Q, N, T>::mul_const(&self, rhs)
}
}
@@ -71,50 +143,175 @@ impl<const Q: u64, const N: usize, const T: u64> BFV<Q, N, T> {
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
// secret key
let s = PR::<Q, N>::rand_u64(&mut rng, Xi_key)?;
let s = Rq::<Q, N>::rand_u64(&mut rng, Xi_key)?;
#[cfg(test)] // sanity check
assert!(s.infinity_norm() <= 1, "{:?}", s.coeffs());
// pk = (-a * s + e, a)
let a = PR::<Q, N>::rand_u64(&mut rng, Uniform::new(0_u64, Q))?;
let e = PR::<Q, N>::rand_f64(&mut rng, Xi_err)?;
let a = Rq::<Q, N>::rand_u64(&mut rng, Uniform::new(0_u64, Q))?;
let e = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
let pk: PublicKey<Q, N> = PublicKey((&(-a) * &s) + e, a.clone());
Ok((SecretKey(s), pk))
}
pub fn encrypt(mut rng: impl Rng, pk: &PublicKey<Q, N>, m: &PR<T, N>) -> Result<RLWE<Q, N>> {
let Xi_key = Uniform::new(-1_f64, 1_f64);
pub fn encrypt(mut rng: impl Rng, pk: &PublicKey<Q, N>, m: &Rq<T, N>) -> Result<RLWE<Q, N>> {
// let Xi_key = Uniform::new(-1_f64, 1_f64);
// let Xi_key = Uniform::new(0_f64, 2_f64);
let Xi_key = Uniform::new(0_u64, 2_u64);
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
let u = PR::<Q, N>::rand_f64(&mut rng, Xi_key)?;
let e_1 = PR::<Q, N>::rand_f64(&mut rng, Xi_err)?;
let e_2 = PR::<Q, N>::rand_f64(&mut rng, Xi_err)?;
let u = Rq::<Q, N>::rand_u64(&mut rng, Xi_key)?;
let e_1 = Rq::<Q, N>::rand_f64_abs(&mut rng, Xi_err)?;
let e_2 = Rq::<Q, N>::rand_f64_abs(&mut rng, Xi_err)?;
// println!("{:?}", &e_1.coeffs());
// println!("{:?}", &e_2.coeffs());
#[cfg(test)] // sanity check
assert!(u.infinity_norm() <= 1, "{:?}", u.coeffs());
// migrate m's coeffs to the bigger modulus Q (from T)
let m = PR::<Q, N>::from_vec_u64(m.coeffs().iter().map(|m_i| m_i.0).collect());
let c0 = &pk.0 * &u + e_1 + m * Self::DELTA;
let m = m.remodule::<Q>();
#[cfg(test)]
{
// sanity check // TODO rm
let m_remod_naive =
Rq::<Q, N>::from_vec_u64(m.coeffs().iter().map(|m_i| m_i.0).collect());
assert_eq!(m_remod_naive, m);
}
// let c0 = &pk.0 * &u + e_1 + m * Self::DELTA;
let c0 = &pk.0 * &u + e_1 + m.mul_div_round(Q, T); // TODO use DELTA?
let c1 = &pk.1 * &u + e_2;
// let c0 = tmp_naive_mul(pk.0, u) + e_1 + m * Self::DELTA;
// let c0 = tmp_naive_mul(pk.0, u) + e_1 + m.mul_div_round(Q, T);
// let c1 = tmp_naive_mul(pk.1, u)
// // &pk.1 * &u
// + e_2;
Ok(RLWE::<Q, N>(c0, c1))
}
pub fn decrypt(sk: &SecretKey<Q, N>, c: &RLWE<Q, N>) -> PR<T, N> {
pub fn decrypt(sk: &SecretKey<Q, N>, c: &RLWE<Q, N>) -> Rq<T, N> {
let cs = c.0 + c.1 * sk.0; // done in mod q
let r: Vec<u64> = cs
.coeffs()
.iter()
.map(|e| ((T as f64 * e.0 as f64) / Q as f64).round() as u64)
.collect();
PR::<T, N>::from_vec_u64(r)
// let c1s = tmp_naive_mul(c.1, sk.0);
// // let c1s = arithmetic::ring::naive_mul(&c.1.to_r(), &sk.0.to_r()); // TODO rm
// // let c1s = Rq::<Q, N>::from_vec_i64(c1s);
// let cs = c.0 + c1s;
// let r: Vec<u64> = cs
// .coeffs()
// .iter()
// .map(|e| ((T as f64 * e.0 as f64) / Q as f64).round() as u64)
// .collect();
// Rq::<T, N>::from_vec_u64(r)
let r: Rq<Q, N> = cs.mul_div_round(T, Q);
r.remodule::<T>()
}
fn add_const(c: &RLWE<Q, N>, m: &PR<T, N>) -> RLWE<Q, N> {
fn add_const(c: &RLWE<Q, N>, m: &Rq<T, N>) -> RLWE<Q, N> {
// assuming T<Q, move m from Zq<T> to Zq<Q>
let m = m.remodule::<Q>();
RLWE::<Q, N>(c.0 + m * Self::DELTA, c.1)
}
fn mul_const(c: &RLWE<Q, N>, m: &PR<T, N>) -> RLWE<Q, N> {
fn mul_const(c: &RLWE<Q, N>, m: &Rq<T, N>) -> RLWE<Q, N> {
// assuming T<Q, move m from Zq<T> to Zq<Q>
let m = m.remodule::<Q>();
RLWE::<Q, N>(c.0 * m * Self::DELTA, c.1)
}
fn rlk_key<const PQ: u64>(mut rng: impl Rng, s: &SecretKey<Q, N>) -> Result<RLK<PQ, N>> {
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?; // TODO review Xi' instead of Xi
let s = s.0.remodule::<PQ>();
let a = Rq::<PQ, N>::rand_u64(&mut rng, Uniform::new(0_u64, PQ))?;
let e = Rq::<PQ, N>::rand_f64(&mut rng, Xi_err)?;
// let rlk_1: Rq<PQ, N> = (&(-a) * &s) - e + (s * s) * P;
let P = PQ / Q;
// let rlk: RLK<PQ, N> = RLK::<PQ, N>((&(-a) * &s) - e + (s * s) * P, a.clone());
let rlk: RLK<PQ, N> = RLK::<PQ, N>(
-(tmp_naive_mul(a, s) + e) + tmp_naive_mul(s, s) * P,
a.clone(),
);
// let rlk: RLK<PQ, N> = RLK::<PQ, N>(-(&a * &s + e) + (s * s) * P, a.clone());
// let pq = P * Q;
// let a = Rq::<Q, N>::rand_u64(&mut rng, Uniform::new(0_u64, pq))?;
// let e = Rq::<Q, N>::rand_f64(&mut rng, Xi_err)?;
//
// let rlk_0: Rq<Q, N> = (&(-a) * &s) - e + (s * s) * P;
// let rlk_0 = rlk_0.remodule::<>();
// let rlk: RLK<Q, N> = RLK(rlk_0, a);
Ok(rlk)
}
fn relinearize<const PQ: u64>(
rlk: &RLK<PQ, N>,
c0: &Rq<Q, N>,
c1: &Rq<Q, N>,
c2: &Rq<Q, N>,
) -> RLWE<Q, N> {
let P = PQ / Q;
// let c2 = c2.remodule::<PQ>();
// let c2 = c2.to_r();
let c2rlk0: Vec<f64> = (c2.to_r() * rlk.0.to_r())
.coeffs()
.iter()
.map(|e| (*e as f64 / P as f64).round())
.collect();
let c2rlk1: Vec<f64> = (c2.to_r() * rlk.1.to_r())
.coeffs()
.iter()
.map(|e| (*e as f64 / P as f64).round())
.collect();
let r0 = Rq::<Q, N>::from_vec_f64(c2rlk0);
let r1 = Rq::<Q, N>::from_vec_f64(c2rlk1);
let res = RLWE::<Q, N>(c0 + &r0, c1 + &r1);
res
}
fn relinearize_204<const PQ: u64>(
rlk: &RLK<PQ, N>,
c0: &Rq<Q, N>,
c1: &Rq<Q, N>,
c2: &Rq<Q, N>,
) -> RLWE<Q, N> {
let P = PQ / Q;
// let c2 = c2.remodule::<PQ>();
// let c2 = c2.to_r();
// let c2rlk0: Vec<f64> = (c2.remodule::<PQ>() * rlk.0)
use arithmetic::ring::naive_mul;
let c2rlk0: Vec<i64> = naive_mul(&c2.to_r(), &rlk.0.to_r());
// .coeffs()
// .iter()
// .map(|e| (*e as f64 / P as f64).round())
// .collect();
let c2rlk1: Vec<i64> = naive_mul(&c2.to_r(), &rlk.1.to_r());
// .coeffs()
// .iter()
// .map(|e| (*e as f64 / P as f64).round())
// .collect();
//
let r0: Rq<Q, N> = arithmetic::ring::mul_div_round::<Q, N>(c2rlk0, 1, P);
let r1: Rq<Q, N> = arithmetic::ring::mul_div_round::<Q, N>(c2rlk1, 1, P);
// let r0 = Rq::<Q, N>::from_vec_f64(c2rlk0);
// let r1 = Rq::<Q, N>::from_vec_f64(c2rlk1);
let res = RLWE::<Q, N>(c0 + &r0, c1 + &r1);
res
}
}
#[cfg(test)]
@@ -133,15 +330,17 @@ mod tests {
let mut rng = rand::thread_rng();
let (sk, pk) = S::new_key(&mut rng)?;
for _ in 0..1000 {
let (sk, pk) = S::new_key(&mut rng)?;
let msg_dist = Uniform::new(0_u64, T);
let m = PR::<T, N>::rand_u64(&mut rng, msg_dist)?;
let msg_dist = Uniform::new(0_u64, T);
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let c = S::encrypt(rng, &pk, &m)?;
let m_recovered = S::decrypt(&sk, &c);
let c = S::encrypt(&mut rng, &pk, &m)?;
let m_recovered = S::decrypt(&sk, &c);
assert_eq!(m, m_recovered);
assert_eq!(m, m_recovered);
}
Ok(())
}
@@ -149,7 +348,8 @@ mod tests {
#[test]
fn test_addition() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 32;
// const N: usize = 32;
const N: usize = 4;
const T: u64 = 4; // plaintext modulus
type S = BFV<Q, N, T>;
@@ -158,8 +358,8 @@ mod tests {
let (sk, pk) = S::new_key(&mut rng)?;
let msg_dist = Uniform::new(0_u64, T);
let m1 = PR::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2 = PR::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let c1 = S::encrypt(&mut rng, &pk, &m1)?;
let c2 = S::encrypt(&mut rng, &pk, &m2)?;
@@ -174,7 +374,7 @@ mod tests {
}
#[test]
fn test_constant_add_mul() -> Result<()> {
fn test_constant_add() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 32;
const T: u64 = 4; // plaintext modulus
@@ -185,66 +385,271 @@ mod tests {
let (sk, pk) = S::new_key(&mut rng)?;
let msg_dist = Uniform::new(0_u64, T);
let m1 = PR::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2_const = PR::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2_const = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let c1 = S::encrypt(&mut rng, &pk, &m1)?;
let c3_add = &c1 + &m2_const;
let c3_mul = &c1 * &m2_const;
// let c3_mul = &c1 * &m2_const;
let m3_add_recovered = S::decrypt(&sk, &c3_add);
let m3_mul_recovered = S::decrypt(&sk, &c3_mul);
// let m3_mul_recovered = S::decrypt(&sk, &c3_mul);
assert_eq!(m1 + m2_const, m3_add_recovered);
let mut mul_res = naive_poly_mul::<T>(&m1.coeffs().to_vec(), &m2_const.coeffs().to_vec());
arithmetic::ring::modulus::<T, N>(&mut mul_res);
dbg!(&mul_res);
let mul_res_2 =
naive_poly_mul_2::<T, N>(&m1.coeffs().to_vec(), &m2_const.coeffs().to_vec());
assert_eq!(mul_res, mul_res_2);
let mul_res = PR::<T, N>::from_vec(mul_res);
assert_eq!(mul_res.coeffs(), m3_mul_recovered.coeffs());
//
// let mut mul_res = naive_poly_mul::<T>(&m1.coeffs().to_vec(), &m2_const.coeffs().to_vec());
// arithmetic::ring::modulus::<T, N>(&mut mul_res);
// dbg!(&mul_res);
// let mul_res_2 =
// naive_poly_mul_2::<T, N>(&m1.coeffs().to_vec(), &m2_const.coeffs().to_vec());
// assert_eq!(mul_res, mul_res_2);
// let mul_res = PR::<T, N>::from_vec(mul_res);
// assert_eq!(mul_res.coeffs(), m3_mul_recovered.coeffs());
Ok(())
}
fn naive_poly_mul<const T: u64>(a: &[Zq<T>], b: &[Zq<T>]) -> Vec<Zq<T>> {
let mut result: Vec<Zq<T>> = vec![Zq::zero(); a.len() + b.len() - 1];
for (i, &ai) in a.iter().enumerate() {
for (j, &bj) in b.iter().enumerate() {
result[i + j] = result[i + j] + (ai * bj);
}
#[test]
fn test_tensor() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1; // q prime, and 2^q + 1 shape
const N: usize = 8;
const T: u64 = 4; // plaintext modulus
// const P: u64 = Q;
const P: u64 = Q * Q;
// const P: u64 = 2_u64.pow(13) * Q + 1;
const PQ: u64 = P * Q;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
for _ in 0..10_000 {
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
test_tensor_opt::<Q, N, T, PQ>(&mut rng, m1, m2)?;
}
result
Ok(())
}
fn naive_poly_mul_2<const T: u64, const N: usize>(
poly1: &[Zq<T>],
poly2: &[Zq<T>],
) -> Vec<Zq<T>> {
let degree1 = poly1.len();
let degree2 = poly2.len();
fn test_tensor_opt<const Q: u64, const N: usize, const T: u64, const PQ: u64>(
mut rng: impl Rng,
m1: Rq<T, N>,
m2: Rq<T, N>,
) -> Result<()> {
let (sk, pk) = BFV::<Q, N, T>::new_key(&mut rng)?;
// The degree of the resulting polynomial will be degree1 + degree2 - 1
let mut result = vec![Zq::zero(); degree1 + degree2 - 1];
let c1 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m1)?;
let c2 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m2)?;
// Perform the multiplication
for i in 0..degree1 {
for j in 0..degree2 {
result[i + j] = result[i + j] + poly1[i] * poly2[j];
}
let (c_a, c_b, c_c) = RLWE::<Q, N>::tensor::<PQ, T>(&c1, &c2);
// decrypt non-relinearized mul result
let m3: Rq<Q, N> = c_a + c_b * sk.0 + c_c * sk.0 * sk.0;
let m3: Rq<Q, N> = m3.mul_div_round(T, Q);
let m3 = m3.remodule::<T>();
let naive = (m1.to_r() * m2.to_r()).to_rq::<T>();
assert_eq!(
m3.coeffs().to_vec(),
naive.coeffs().to_vec(),
"\n\nfor testing:\nlet m1 = Rq::<T, N>::from_vec_u64(vec!{:?});\nlet m2 = Rq::<T, N>::from_vec_u64(vec!{:?});\n",
m1.coeffs(),
m2.coeffs()
);
if m3.coeffs().to_vec() != naive.coeffs().to_vec() {
return Err(anyhow!("not eq"));
}
// Reduce the result modulo x^N + 1
let mut reduced_result = vec![Zq::zero(); N];
Ok(())
}
for i in 0..result.len() {
let mod_index = i % N; // wrap around using modulo N
reduced_result[mod_index] += result[i];
fn test_tensor_opt_DBG<const Q: u64, const N: usize, const T: u64, const PQ: u64>(
mut rng: impl Rng,
m1: Rq<T, N>,
m2: Rq<T, N>,
) -> Result<()> {
let (sk, pk) = BFV::<Q, N, T>::new_key(&mut rng)?;
let c1 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m1)?;
let c2 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m2)?;
let (c_a, c_b, c_c) = RLWE::<Q, N>::tensor::<PQ, T>(&c1, &c2);
// decrypt non-relinearized mul result
let m3: Rq<Q, N> = c_a + c_b * sk.0 + c_c * sk.0 * sk.0;
dbg!(m3);
let m3: Rq<Q, N> = m3.mul_div_round(T, Q);
dbg!(m3);
let m3 = m3.remodule::<T>();
dbg!(m3);
// let naive = (m1.to_r() * m2.to_r()).to_rq::<T>();
// let naive = m1.remodule::<Q>() * m2.remodule::<Q>();
let naive = (m1.remodule::<Q>() * m2.remodule::<Q>()).remodule::<T>();
dbg!(naive);
assert_eq!(
m3.coeffs().to_vec(),
naive.coeffs().to_vec(),
"\n\nfor testing:\nlet m1 = Rq::<T, N>::from_vec_u64(vec!{:?});\nlet m2 = Rq::<T, N>::from_vec_u64(vec!{:?});\n",
m1.coeffs(),
m2.coeffs()
);
// if m3.coeffs().to_vec() != naive.coeffs().to_vec() {
// return Err(anyhow!("not eq"));
// }
Ok(())
}
#[test]
fn test_mul_relin() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 32;
const T: u64 = 4; // plaintext modulus
type S = BFV<Q, N, T>;
const P: u64 = Q * Q;
const PQ: u64 = P * Q;
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
for _ in 0..100 {
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
test_mul_relin_opt::<Q, N, T, PQ>(&mut rng, m1, m2)?;
}
// Return the reduced polynomial
reduced_result
Ok(())
}
fn test_mul_relin_opt<const Q: u64, const N: usize, const T: u64, const PQ: u64>(
mut rng: impl Rng,
m1: Rq<T, N>,
m2: Rq<T, N>,
) -> Result<()> {
let (sk, pk) = BFV::<Q, N, T>::new_key(&mut rng)?;
let rlk = BFV::<Q, N, T>::rlk_key::<PQ>(&mut rng, &sk)?;
let c1 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m1)?;
let c2 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &m2)?;
let c3 = RLWE::<Q, N>::mul::<PQ, T>(&rlk, &c1, &c2);
let m3 = BFV::<Q, N, T>::decrypt(&sk, &c3);
let naive = (m1.to_r() * m2.to_r()).to_rq::<T>();
assert_eq!(m3.coeffs().to_vec(), naive.coeffs().to_vec(),
"\n\nfor testing:\nlet m1 = Rq::<T, N>::from_vec_u64(vec!{:?});\nlet m2 = Rq::<T, N>::from_vec_u64(vec!{:?});\n",
m1.coeffs(),
m2.coeffs()
);
Ok(())
}
#[test]
fn test_naive_mul() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1; // prime, and 2^q + 1 shape
const N: usize = 4;
const T: u64 = 4; // plaintext modulus
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, T);
// for _ in 0..10_000 {
for _ in 0..2 {
println!("---");
// let a = Rq::<Q, N>::rand_u64(&mut rng, msg_dist)?;
// let b = Rq::<Q, N>::rand_u64(&mut rng, msg_dist)?;
// let a = Rq::<Q, N>::from_vec_u64(vec![Q - 1, Q - 2, Q - 3, Q - 3]);
// let b = Rq::<Q, N>::from_vec_u64(vec![Q - 3, Q - 3, Q - 2, Q - 1]);
let a = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
let b = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
dbg!(&a);
dbg!(&b);
let (_, pk) = BFV::<Q, N, T>::new_key(&mut rng)?;
let ciph1 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &a)?;
let ciph2 = BFV::<Q, N, T>::encrypt(&mut rng, &pk, &b)?;
let a = ciph1.0;
let b = ciph2.0;
dbg!(&a);
dbg!(&b);
let c0: Vec<i64> = arithmetic::ring::naive_mul(&a.to_r(), &b.to_r());
let c0 = Rq::<Q, N>::from_vec_i64(c0);
let c1 = tmp_naive_mul(a, b); // naive mul
let c2: Rq<Q, N> = a * b; // NTT mul
println!("{:?}", c0.coeffs());
println!("{:?}", c1.coeffs());
println!("{:?}", c2.coeffs());
assert_eq!(c0, c2);
assert_eq!(c1, c2);
// scale by Delta=Q/T
let a = a.mul_div_round(Q, T);
let b = b.mul_div_round(Q, T);
dbg!(&a);
dbg!(&b);
let c0: Vec<i64> = arithmetic::ring::naive_mul(&a.to_r(), &b.to_r());
let c0 = Rq::<Q, N>::from_vec_i64(c0);
let c1 = tmp_naive_mul(a, b); // naive mul
let c2: Rq<Q, N> = a * b; // NTT mul
println!("{:?}", c0.coeffs());
println!("{:?}", c1.coeffs());
println!("{:?}", c2.coeffs());
assert_eq!(c0, c2);
assert_eq!(c1, c2);
let c0 = c0.mul_div_round(T, Q);
let c1 = c1.mul_div_round(T, Q);
let c2 = c2.mul_div_round(T, Q);
println!("{:?}", c0.coeffs());
println!("{:?}", c1.coeffs());
println!("{:?}", c2.coeffs());
assert_eq!(c0, c2);
assert_eq!(c1, c2);
/*
// now same as before, but multiplying by T/Q
let c0: Vec<i64> = arithmetic::ring::naive_mul(&a.to_r(), &b.to_r());
let c0: Vec<f64> = c0
.iter()
.map(|e| ((T as f64 * *e as f64) / Q as f64).round())
.collect();
let c0 = Rq::<Q, N>::from_vec_f64(c0);
dbg!(&c0.coeffs());
let a = a.mul_div_round(T, Q);
let b = b.mul_div_round(T, Q);
println!("a{:?}", a.coeffs());
println!("b{:?}", b.coeffs());
let c4: Vec<i64> = arithmetic::ring::naive_mul(&a.to_r(), &b.to_r());
let c4 = Rq::<Q, N>::from_vec_i64(c4);
let c4 = c4.mul_div_round(T, Q);
let c1 = tmp_naive_mul(a, b); // naive mul
let c1 = c1.mul_div_round(T, Q);
let c2 = a * b; // NTT mul
let c2 = c2.mul_div_round(T, Q);
println!("{:?}", c0.coeffs());
println!("{:?}", c1.coeffs());
println!("{:?}", c2.coeffs());
println!("{:?}", c4.coeffs());
assert_eq!(c0, c2);
assert_eq!(c4, c2);
assert_eq!(c1, c2);
*/
}
Ok(())
}
}