mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
add discretized torus & 𝕋_<N,q>[X]; organize a bit arith crate
This commit is contained in:
192
arith/src/ring_torus.rs
Normal file
192
arith/src/ring_torus.rs
Normal file
@@ -0,0 +1,192 @@
|
||||
//! 𝕋_<N,q>[X] = ℝ_<N,q>[X] / ℤ_<N,q>[X], polynomials modulo X^N+1 with
|
||||
//! coefficients in 𝕋_Q.
|
||||
//!
|
||||
//! Note: this is not an algebraic ring, since internal-product is not well
|
||||
//! defined. But since we work over the discrete torus 𝕋_q, which we identify as
|
||||
//! 𝕋q = ℤ/qℤ ≈ ℤq, whith q=64. Since we allow product between 𝕋q elements and
|
||||
//! u64, we fit it into the `Ring` trait (from ring.rs) so that we can compose
|
||||
//! the 𝕋_<N,q> implementation with the other objects from the code.
|
||||
|
||||
use rand::{distributions::Distribution, Rng};
|
||||
use std::array;
|
||||
use std::iter::Sum;
|
||||
use std::ops::{Add, AddAssign, Mul, Sub, SubAssign};
|
||||
|
||||
use crate::{ring::Ring, torus::T64};
|
||||
|
||||
/// 𝕋_<N,Q>[X] = 𝕋<Q>[X]/(X^N +1), polynomials modulo X^N+1 with coefficients in
|
||||
/// 𝕋, where Q=2^64.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct Tn<const N: usize>(pub [T64; N]);
|
||||
|
||||
impl<const N: usize> Ring for Tn<N> {
|
||||
type C = T64;
|
||||
|
||||
fn coeffs(&self) -> Vec<T64> {
|
||||
self.0.to_vec()
|
||||
}
|
||||
|
||||
fn zero() -> Self {
|
||||
Self(array::from_fn(|_| T64::zero()))
|
||||
}
|
||||
|
||||
fn rand(mut rng: impl Rng, dist: impl Distribution<f64>) -> Self {
|
||||
Self(array::from_fn(|_| T64::rand_f64(&mut rng, &dist)))
|
||||
}
|
||||
|
||||
fn from_vec(coeffs: Vec<Self::C>) -> Self {
|
||||
let mut p = coeffs;
|
||||
modulus::<N>(&mut p);
|
||||
Self(array::from_fn(|i| p[i]))
|
||||
}
|
||||
|
||||
fn decompose(&self, beta: u32, l: u32) -> Vec<Self> {
|
||||
let elems: Vec<Vec<T64>> = self.0.iter().map(|r| r.decompose(beta, l)).collect();
|
||||
// transpose it
|
||||
let r: Vec<Vec<T64>> = (0..elems[0].len())
|
||||
.map(|i| (0..elems.len()).map(|j| elems[j][i]).collect())
|
||||
.collect();
|
||||
// convert it to Tn<N>
|
||||
r.iter().map(|a_i| Self::from_vec(a_i.clone())).collect()
|
||||
}
|
||||
}
|
||||
|
||||
// apply mod (X^N+1)
|
||||
pub fn modulus<const N: usize>(p: &mut Vec<T64>) {
|
||||
if p.len() < N {
|
||||
return;
|
||||
}
|
||||
for i in N..p.len() {
|
||||
p[i - N] = p[i - N].clone() - p[i].clone();
|
||||
p[i] = T64::zero();
|
||||
}
|
||||
p.truncate(N);
|
||||
}
|
||||
|
||||
impl<const N: usize> Add<Tn<N>> for Tn<N> {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: Self) -> Self {
|
||||
Self(array::from_fn(|i| self.0[i] + rhs.0[i]))
|
||||
}
|
||||
}
|
||||
impl<const N: usize> Add<&Tn<N>> for &Tn<N> {
|
||||
type Output = Tn<N>;
|
||||
|
||||
fn add(self, rhs: &Tn<N>) -> Self::Output {
|
||||
Tn(array::from_fn(|i| self.0[i] + rhs.0[i]))
|
||||
}
|
||||
}
|
||||
impl<const N: usize> AddAssign for Tn<N> {
|
||||
fn add_assign(&mut self, rhs: Self) {
|
||||
for i in 0..N {
|
||||
self.0[i] += rhs.0[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> Sum<Tn<N>> for Tn<N> {
|
||||
fn sum<I>(iter: I) -> Self
|
||||
where
|
||||
I: Iterator<Item = Self>,
|
||||
{
|
||||
let mut acc = Tn::<N>::zero();
|
||||
for e in iter {
|
||||
acc += e;
|
||||
}
|
||||
acc
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> Sub<Tn<N>> for Tn<N> {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: Self) -> Self {
|
||||
Self(array::from_fn(|i| self.0[i] - rhs.0[i]))
|
||||
}
|
||||
}
|
||||
impl<const N: usize> Sub<&Tn<N>> for &Tn<N> {
|
||||
type Output = Tn<N>;
|
||||
|
||||
fn sub(self, rhs: &Tn<N>) -> Self::Output {
|
||||
Tn(array::from_fn(|i| self.0[i] - rhs.0[i]))
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> SubAssign for Tn<N> {
|
||||
fn sub_assign(&mut self, rhs: Self) {
|
||||
for i in 0..N {
|
||||
self.0[i] -= rhs.0[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> PartialEq for Tn<N> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.0 == other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> Mul<Tn<N>> for Tn<N> {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, rhs: Self) -> Self {
|
||||
naive_poly_mul(&self, &rhs)
|
||||
}
|
||||
}
|
||||
impl<const N: usize> Mul<&Tn<N>> for &Tn<N> {
|
||||
type Output = Tn<N>;
|
||||
|
||||
fn mul(self, rhs: &Tn<N>) -> Self::Output {
|
||||
naive_poly_mul(self, rhs)
|
||||
}
|
||||
}
|
||||
|
||||
fn naive_poly_mul<const N: usize>(poly1: &Tn<N>, poly2: &Tn<N>) -> Tn<N> {
|
||||
let poly1: Vec<u128> = poly1.0.iter().map(|c| c.0 as u128).collect();
|
||||
let poly2: Vec<u128> = poly2.0.iter().map(|c| c.0 as u128).collect();
|
||||
let mut result: Vec<u128> = vec![0; (N * 2) - 1];
|
||||
for i in 0..N {
|
||||
for j in 0..N {
|
||||
result[i + j] = result[i + j] + poly1[i] * poly2[j];
|
||||
}
|
||||
}
|
||||
|
||||
// apply mod (X^N + 1))
|
||||
modulus_u128::<N>(&mut result);
|
||||
|
||||
// sanity check: check that there are no coeffs > i64_max
|
||||
assert_eq!(
|
||||
result,
|
||||
Tn::<N>(array::from_fn(|i| T64(result[i] as u64)))
|
||||
.coeffs()
|
||||
.iter()
|
||||
.map(|c| c.0 as u128)
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
Tn(array::from_fn(|i| T64(result[i] as u64)))
|
||||
}
|
||||
fn modulus_u128<const N: usize>(p: &mut Vec<u128>) {
|
||||
if p.len() < N {
|
||||
return;
|
||||
}
|
||||
for i in N..p.len() {
|
||||
p[i - N] = p[i - N].clone() - p[i].clone();
|
||||
p[i] = 0;
|
||||
}
|
||||
p.truncate(N);
|
||||
}
|
||||
|
||||
// mul by u64
|
||||
impl<const N: usize> Mul<u64> for Tn<N> {
|
||||
type Output = Self;
|
||||
fn mul(self, s: u64) -> Self {
|
||||
Self(array::from_fn(|i| self.0[i] * s))
|
||||
}
|
||||
}
|
||||
impl<const N: usize> Mul<&u64> for &Tn<N> {
|
||||
type Output = Tn<N>;
|
||||
fn mul(self, s: &u64) -> Self::Output {
|
||||
Tn::<N>(array::from_fn(|i| self.0[i] * *s))
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user