mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
add TGSW encryption & decryption
This commit is contained in:
@@ -5,5 +5,6 @@
|
|||||||
#![allow(clippy::upper_case_acronyms)]
|
#![allow(clippy::upper_case_acronyms)]
|
||||||
#![allow(dead_code)] // TMP
|
#![allow(dead_code)] // TMP
|
||||||
|
|
||||||
|
pub mod tgsw;
|
||||||
pub mod tlev;
|
pub mod tlev;
|
||||||
pub mod tlwe;
|
pub mod tlwe;
|
||||||
|
|||||||
74
tfhe/src/tgsw.rs
Normal file
74
tfhe/src/tgsw.rs
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
use anyhow::Result;
|
||||||
|
use itertools::zip_eq;
|
||||||
|
use rand::Rng;
|
||||||
|
use std::array;
|
||||||
|
use std::ops::{Add, Mul};
|
||||||
|
|
||||||
|
use arith::{Ring, Rq, Tn, T64, TR};
|
||||||
|
|
||||||
|
use crate::tlev::TLev;
|
||||||
|
use crate::tlwe::{PublicKey, SecretKey, TLWE};
|
||||||
|
use gfhe::glwe::GLWE;
|
||||||
|
|
||||||
|
/// vector of length K+1 = [K], [1]
|
||||||
|
#[derive(Clone, Debug)]
|
||||||
|
pub struct TGSW<const K: usize>(pub(crate) Vec<TLev<K>>, TLev<K>);
|
||||||
|
|
||||||
|
impl<const K: usize> TGSW<K> {
|
||||||
|
pub fn encrypt_s(
|
||||||
|
mut rng: impl Rng,
|
||||||
|
beta: u32,
|
||||||
|
l: u32,
|
||||||
|
sk: &SecretKey<K>,
|
||||||
|
m: &T64,
|
||||||
|
) -> Result<Self> {
|
||||||
|
let a: Vec<TLev<K>> = (0..K)
|
||||||
|
.map(|i| TLev::encrypt_s(&mut rng, beta, l, sk, &(-sk.0 .0[i] * *m)))
|
||||||
|
.collect::<Result<Vec<_>>>()?;
|
||||||
|
let b: TLev<K> = TLev::encrypt_s(&mut rng, beta, l, sk, m)?;
|
||||||
|
Ok(Self(a, b))
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn decrypt(&self, sk: &SecretKey<K>, beta: u32) -> T64 {
|
||||||
|
self.1.decrypt(sk, beta)
|
||||||
|
}
|
||||||
|
pub fn from_tlwe(_tlwe: TLWE<K>) -> Self {
|
||||||
|
todo!()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use anyhow::Result;
|
||||||
|
use rand::distributions::Uniform;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_encrypt_decrypt() -> Result<()> {
|
||||||
|
const T: u64 = 2; // plaintext modulus
|
||||||
|
const K: usize = 16;
|
||||||
|
type S = TGSW<K>;
|
||||||
|
|
||||||
|
let beta: u32 = 2;
|
||||||
|
let l: u32 = 16;
|
||||||
|
|
||||||
|
let mut rng = rand::thread_rng();
|
||||||
|
let msg_dist = Uniform::new(0_u64, T);
|
||||||
|
|
||||||
|
for _ in 0..50 {
|
||||||
|
let (sk, _) = TLWE::<K>::new_key(&mut rng)?;
|
||||||
|
|
||||||
|
let m: Rq<T, 1> = Rq::rand_u64(&mut rng, msg_dist)?;
|
||||||
|
let p: T64 = TLev::<K>::encode::<T>(&m); // plaintext
|
||||||
|
|
||||||
|
let c = S::encrypt_s(&mut rng, beta, l, &sk, &p)?;
|
||||||
|
let p_recovered = c.decrypt(&sk, beta);
|
||||||
|
let m_recovered = TLev::<K>::decode::<T>(&p_recovered);
|
||||||
|
|
||||||
|
assert_eq!(m, m_recovered);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -1,4 +1,5 @@
|
|||||||
use anyhow::Result;
|
use anyhow::Result;
|
||||||
|
use itertools::zip_eq;
|
||||||
use rand::Rng;
|
use rand::Rng;
|
||||||
use std::array;
|
use std::array;
|
||||||
use std::ops::{Add, Mul};
|
use std::ops::{Add, Mul};
|
||||||
@@ -11,11 +12,11 @@ use crate::tlwe::{PublicKey, SecretKey, TLWE};
|
|||||||
pub struct TLev<const K: usize>(pub(crate) Vec<TLWE<K>>);
|
pub struct TLev<const K: usize>(pub(crate) Vec<TLWE<K>>);
|
||||||
|
|
||||||
impl<const K: usize> TLev<K> {
|
impl<const K: usize> TLev<K> {
|
||||||
pub fn encode<const T: u64>(m: &Rq<T, 1>) -> Tn<1> {
|
pub fn encode<const T: u64>(m: &Rq<T, 1>) -> T64 {
|
||||||
let coeffs = m.coeffs();
|
let coeffs = m.coeffs();
|
||||||
Tn(array::from_fn(|i| T64(coeffs[i].0)))
|
T64(coeffs[0].0) // N=1, so take the only coeff
|
||||||
}
|
}
|
||||||
pub fn decode<const T: u64>(p: &Tn<1>) -> Rq<T, 1> {
|
pub fn decode<const T: u64>(p: &T64) -> Rq<T, 1> {
|
||||||
Rq::<T, 1>::from_vec_u64(p.coeffs().iter().map(|c| c.0).collect())
|
Rq::<T, 1>::from_vec_u64(p.coeffs().iter().map(|c| c.0).collect())
|
||||||
}
|
}
|
||||||
pub fn encrypt(
|
pub fn encrypt(
|
||||||
@@ -23,7 +24,7 @@ impl<const K: usize> TLev<K> {
|
|||||||
beta: u32,
|
beta: u32,
|
||||||
l: u32,
|
l: u32,
|
||||||
pk: &PublicKey<K>,
|
pk: &PublicKey<K>,
|
||||||
m: &Tn<1>,
|
m: &T64,
|
||||||
) -> Result<Self> {
|
) -> Result<Self> {
|
||||||
let tlev: Vec<TLWE<K>> = (1..l + 1)
|
let tlev: Vec<TLWE<K>> = (1..l + 1)
|
||||||
.map(|i| {
|
.map(|i| {
|
||||||
@@ -35,25 +36,33 @@ impl<const K: usize> TLev<K> {
|
|||||||
}
|
}
|
||||||
pub fn encrypt_s(
|
pub fn encrypt_s(
|
||||||
mut rng: impl Rng,
|
mut rng: impl Rng,
|
||||||
beta: u32,
|
_beta: u32, // TODO rm, and make beta=2 always
|
||||||
l: u32,
|
l: u32,
|
||||||
sk: &SecretKey<K>,
|
sk: &SecretKey<K>,
|
||||||
m: &Tn<1>,
|
m: &T64,
|
||||||
) -> Result<Self> {
|
) -> Result<Self> {
|
||||||
let tlev: Vec<TLWE<K>> = (1..l + 1)
|
let tlev: Vec<TLWE<K>> = (1..l as u64 + 1)
|
||||||
.map(|i| {
|
.map(|i| {
|
||||||
TLWE::<K>::encrypt_s(&mut rng, sk, &(*m * (u64::MAX / beta.pow(i as u32) as u64)))
|
let aux = if i < 64 {
|
||||||
|
*m * (u64::MAX / (1u64 << i))
|
||||||
|
} else {
|
||||||
|
// 1<<64 would overflow, and anyways we're dividing u64::MAX
|
||||||
|
// by it, which would be equal to 1
|
||||||
|
*m
|
||||||
|
};
|
||||||
|
TLWE::<K>::encrypt_s(&mut rng, sk, &aux)
|
||||||
})
|
})
|
||||||
.collect::<Result<Vec<_>>>()?;
|
.collect::<Result<Vec<_>>>()?;
|
||||||
|
|
||||||
Ok(Self(tlev))
|
Ok(Self(tlev))
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn decrypt(&self, sk: &SecretKey<K>, beta: u32) -> Tn<1> {
|
pub fn decrypt(&self, sk: &SecretKey<K>, beta: u32) -> T64 {
|
||||||
let pt = self.0[0].decrypt(sk);
|
let pt = self.0[0].decrypt(sk);
|
||||||
pt.mul_div_round(beta as u64, u64::MAX)
|
pt.mul_div_round(beta as u64, u64::MAX)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
// TODO review u64::MAX, since is -1 of the value we actually want
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
@@ -78,7 +87,7 @@ mod tests {
|
|||||||
let (sk, pk) = TLWE::<K>::new_key(&mut rng)?;
|
let (sk, pk) = TLWE::<K>::new_key(&mut rng)?;
|
||||||
|
|
||||||
let m: Rq<T, 1> = Rq::rand_u64(&mut rng, msg_dist)?;
|
let m: Rq<T, 1> = Rq::rand_u64(&mut rng, msg_dist)?;
|
||||||
let p: Tn<1> = S::encode::<T>(&m); // plaintext
|
let p: T64 = S::encode::<T>(&m); // plaintext
|
||||||
|
|
||||||
let c = S::encrypt(&mut rng, beta, l, &pk, &p)?;
|
let c = S::encrypt(&mut rng, beta, l, &pk, &p)?;
|
||||||
let p_recovered = c.decrypt(&sk, beta);
|
let p_recovered = c.decrypt(&sk, beta);
|
||||||
|
|||||||
@@ -10,47 +10,50 @@ use std::ops::{Add, AddAssign, Mul, Sub};
|
|||||||
use arith::{Ring, Rq, Tn, T64, TR};
|
use arith::{Ring, Rq, Tn, T64, TR};
|
||||||
use gfhe::{glwe, GLWE};
|
use gfhe::{glwe, GLWE};
|
||||||
|
|
||||||
const ERR_SIGMA: f64 = 3.2;
|
// #[derive(Clone, Debug)]
|
||||||
|
// pub struct SecretKey<const K: usize>(glwe::SecretKey<T64, K>);
|
||||||
|
pub type SecretKey<const K: usize> = glwe::SecretKey<T64, K>;
|
||||||
|
|
||||||
|
// #[derive(Clone, Debug)]
|
||||||
|
// pub struct PublicKey<const K: usize>(glwe::PublicKey<T64, K>);
|
||||||
|
pub type PublicKey<const K: usize> = glwe::PublicKey<T64, K>;
|
||||||
|
|
||||||
#[derive(Clone, Debug)]
|
#[derive(Clone, Debug)]
|
||||||
pub struct SecretKey<const K: usize>(glwe::SecretKey<Tn<1>, K>);
|
pub struct TLWE<const K: usize>(pub GLWE<T64, K>);
|
||||||
#[derive(Clone, Debug)]
|
|
||||||
pub struct PublicKey<const K: usize>(glwe::PublicKey<Tn<1>, K>);
|
|
||||||
|
|
||||||
#[derive(Clone, Debug)]
|
|
||||||
pub struct TLWE<const K: usize>(pub GLWE<Tn<1>, K>);
|
|
||||||
|
|
||||||
impl<const K: usize> TLWE<K> {
|
impl<const K: usize> TLWE<K> {
|
||||||
pub fn zero() -> Self {
|
pub fn zero() -> Self {
|
||||||
Self(GLWE::<Tn<1>, K>::zero())
|
Self(GLWE::<T64, K>::zero())
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn new_key(rng: impl Rng) -> Result<(SecretKey<K>, PublicKey<K>)> {
|
pub fn new_key(rng: impl Rng) -> Result<(SecretKey<K>, PublicKey<K>)> {
|
||||||
let (sk, pk) = GLWE::new_key(rng)?;
|
let (sk, pk) = GLWE::new_key(rng)?;
|
||||||
Ok((SecretKey(sk), PublicKey(pk)))
|
// Ok((SecretKey(sk), PublicKey(pk)))
|
||||||
|
Ok((sk, pk))
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn encode<const P: u64>(m: &Rq<P, 1>) -> Tn<1> {
|
pub fn encode<const P: u64>(m: &Rq<P, 1>) -> T64 {
|
||||||
let delta = u64::MAX / P; // floored
|
let delta = u64::MAX / P; // floored
|
||||||
let coeffs = m.coeffs();
|
let coeffs = m.coeffs();
|
||||||
Tn(array::from_fn(|i| T64(coeffs[i].0 * delta)))
|
// Tn(array::from_fn(|i| T64(coeffs[i].0 * delta)))
|
||||||
|
T64(coeffs[0].0 * delta)
|
||||||
}
|
}
|
||||||
pub fn decode<const P: u64>(p: &Tn<1>) -> Rq<P, 1> {
|
pub fn decode<const P: u64>(p: &T64) -> Rq<P, 1> {
|
||||||
let p = p.mul_div_round(P, u64::MAX);
|
let p = p.mul_div_round(P, u64::MAX);
|
||||||
Rq::<P, 1>::from_vec_u64(p.coeffs().iter().map(|c| c.0).collect())
|
Rq::<P, 1>::from_vec_u64(p.coeffs().iter().map(|c| c.0).collect())
|
||||||
}
|
}
|
||||||
|
|
||||||
// encrypts with the given SecretKey (instead of PublicKey)
|
// encrypts with the given SecretKey (instead of PublicKey)
|
||||||
pub fn encrypt_s(rng: impl Rng, sk: &SecretKey<K>, p: &Tn<1>) -> Result<Self> {
|
pub fn encrypt_s(rng: impl Rng, sk: &SecretKey<K>, p: &T64) -> Result<Self> {
|
||||||
let glwe = GLWE::encrypt_s(rng, &sk.0, p)?;
|
let glwe = GLWE::encrypt_s(rng, &sk, p)?;
|
||||||
Ok(Self(glwe))
|
Ok(Self(glwe))
|
||||||
}
|
}
|
||||||
pub fn encrypt(rng: impl Rng, pk: &PublicKey<K>, p: &Tn<1>) -> Result<Self> {
|
pub fn encrypt(rng: impl Rng, pk: &PublicKey<K>, p: &T64) -> Result<Self> {
|
||||||
let glwe = GLWE::encrypt(rng, &pk.0, p)?;
|
let glwe = GLWE::encrypt(rng, &pk, p)?;
|
||||||
Ok(Self(glwe))
|
Ok(Self(glwe))
|
||||||
}
|
}
|
||||||
pub fn decrypt(&self, sk: &SecretKey<K>) -> Tn<1> {
|
pub fn decrypt(&self, sk: &SecretKey<K>) -> T64 {
|
||||||
self.0.decrypt(&sk.0)
|
self.0.decrypt(&sk)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -86,29 +89,29 @@ impl<const K: usize> Sub<TLWE<K>> for TLWE<K> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// plaintext addition
|
// plaintext addition
|
||||||
impl<const K: usize> Add<Tn<1>> for TLWE<K> {
|
impl<const K: usize> Add<T64> for TLWE<K> {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
fn add(self, plaintext: Tn<1>) -> Self {
|
fn add(self, plaintext: T64) -> Self {
|
||||||
let a: TR<Tn<1>, K> = self.0 .0;
|
let a: TR<T64, K> = self.0 .0;
|
||||||
let b: Tn<1> = self.0 .1 + plaintext;
|
let b: T64 = self.0 .1 + plaintext;
|
||||||
Self(GLWE(a, b))
|
Self(GLWE(a, b))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// plaintext substraction
|
// plaintext substraction
|
||||||
impl<const K: usize> Sub<Tn<1>> for TLWE<K> {
|
impl<const K: usize> Sub<T64> for TLWE<K> {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
fn sub(self, plaintext: Tn<1>) -> Self {
|
fn sub(self, plaintext: T64) -> Self {
|
||||||
let a: TR<Tn<1>, K> = self.0 .0;
|
let a: TR<T64, K> = self.0 .0;
|
||||||
let b: Tn<1> = self.0 .1 - plaintext;
|
let b: T64 = self.0 .1 - plaintext;
|
||||||
Self(GLWE(a, b))
|
Self(GLWE(a, b))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// plaintext multiplication
|
// plaintext multiplication
|
||||||
impl<const K: usize> Mul<Tn<1>> for TLWE<K> {
|
impl<const K: usize> Mul<T64> for TLWE<K> {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
fn mul(self, plaintext: Tn<1>) -> Self {
|
fn mul(self, plaintext: T64) -> Self {
|
||||||
let a: TR<Tn<1>, K> = TR(self.0 .0 .0.iter().map(|r_i| *r_i * plaintext).collect());
|
let a: TR<T64, K> = TR(self.0 .0 .0.iter().map(|r_i| *r_i * plaintext).collect());
|
||||||
let b: Tn<1> = self.0 .1 * plaintext;
|
let b: T64 = self.0 .1 * plaintext;
|
||||||
Self(GLWE(a, b))
|
Self(GLWE(a, b))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -134,7 +137,7 @@ mod tests {
|
|||||||
|
|
||||||
let m = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
let m = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
||||||
dbg!(&m);
|
dbg!(&m);
|
||||||
let p: Tn<1> = S::encode::<T>(&m);
|
let p: T64 = S::encode::<T>(&m);
|
||||||
dbg!(&p);
|
dbg!(&p);
|
||||||
|
|
||||||
let c = S::encrypt(&mut rng, &pk, &p)?;
|
let c = S::encrypt(&mut rng, &pk, &p)?;
|
||||||
@@ -168,8 +171,8 @@ mod tests {
|
|||||||
|
|
||||||
let m1 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
let m1 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m2 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
let m2 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let p1: Tn<1> = S::encode::<T>(&m1); // plaintext
|
let p1: T64 = S::encode::<T>(&m1); // plaintext
|
||||||
let p2: Tn<1> = S::encode::<T>(&m2); // plaintext
|
let p2: T64 = S::encode::<T>(&m2); // plaintext
|
||||||
|
|
||||||
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
|
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
|
||||||
let c2 = S::encrypt(&mut rng, &pk, &p2)?;
|
let c2 = S::encrypt(&mut rng, &pk, &p2)?;
|
||||||
@@ -199,8 +202,8 @@ mod tests {
|
|||||||
|
|
||||||
let m1 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
let m1 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m2 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
let m2 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let p1: Tn<1> = S::encode::<T>(&m1); // plaintext
|
let p1: T64 = S::encode::<T>(&m1); // plaintext
|
||||||
let p2: Tn<1> = S::encode::<T>(&m2); // plaintext
|
let p2: T64 = S::encode::<T>(&m2); // plaintext
|
||||||
|
|
||||||
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
|
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
|
||||||
|
|
||||||
@@ -209,7 +212,7 @@ mod tests {
|
|||||||
let p3_recovered = c3.decrypt(&sk);
|
let p3_recovered = c3.decrypt(&sk);
|
||||||
let m3_recovered = S::decode::<T>(&p3_recovered);
|
let m3_recovered = S::decode::<T>(&p3_recovered);
|
||||||
|
|
||||||
assert_eq!((m1 + m2).remodule::<T>(), m3_recovered);
|
assert_eq!(m1 + m2, m3_recovered);
|
||||||
}
|
}
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
@@ -229,15 +232,16 @@ mod tests {
|
|||||||
|
|
||||||
let m1 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
let m1 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m2 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
let m2 = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let p1: Tn<1> = S::encode::<T>(&m1);
|
let p1: T64 = S::encode::<T>(&m1);
|
||||||
// don't scale up p2, set it directly from m2
|
// don't scale up p2, set it directly from m2
|
||||||
let p2: Tn<1> = Tn(array::from_fn(|i| T64(m2.coeffs()[i].0)));
|
// let p2: T64 = Tn(array::from_fn(|i| T64(m2.coeffs()[i].0)));
|
||||||
|
let p2: T64 = T64(m2.coeffs()[0].0);
|
||||||
|
|
||||||
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
|
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
|
||||||
|
|
||||||
let c3 = c1 * p2;
|
let c3 = c1 * p2;
|
||||||
|
|
||||||
let p3_recovered: Tn<1> = c3.decrypt(&sk);
|
let p3_recovered: T64 = c3.decrypt(&sk);
|
||||||
let m3_recovered = S::decode::<T>(&p3_recovered);
|
let m3_recovered = S::decode::<T>(&p3_recovered);
|
||||||
assert_eq!((m1.to_r() * m2.to_r()).to_rq::<T>(), m3_recovered);
|
assert_eq!((m1.to_r() * m2.to_r()).to_rq::<T>(), m3_recovered);
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user